Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient dynamics of vulcanian explosions and column collapse

Abstract

Several analytical and numerical eruption models have provided insight into volcanic eruption behaviour1,2,3,4,5, but most address plinian-type eruptions where vent conditions are quasi-steady. Only a few studies have explored the physics of short-duration vulcanian explosions6,7,8,9 with unsteady vent conditions and blast events10,11. Here we present a technique that links unsteady vent flux of vulcanian explosions to the resulting dispersal of volcanic ejecta, using a numerical, axisymmetric model with multiple particle sizes. We use observational data from well documented explosions in 1997 at the Soufrière Hills volcano in Montserrat, West Indies, to constrain pre-eruptive subsurface initial conditions and to compare with our simulation results. The resulting simulations duplicate many features of the observed explosions, showing transitional behaviour where mass is divided between a buoyant plume and hazardous radial pyroclastic currents fed by a collapsing fountain12. We find that leakage of volcanic gas from the conduit through surrounding rocks over a short period (of the order of 10 hours) or retarded exsolution can dictate the style of explosion. Our simulations also reveal the internal plume dynamics and particle-size segregation mechanisms that may occur in such eruptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of overhang and boil-over styles of vulcanian fountain collapse.
Figure 2: Particle concentration and trajectories of simulated vulcanian explosion (SimB).
Figure 3: Particle concentrations and trajectories of simulated vulcanian explosions (SimA and SimC).
Figure 4: Comparison of real and simulated vulcanian explosions.

Similar content being viewed by others

References

  1. Sparks, R. S. J., Wilson, L. & Hulme, G. Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse. J. Geophys. Res. 83, 1727–1739 (1978).

    Article  ADS  Google Scholar 

  2. Valentine, G. A. & Wolhletz, K. H. Numerical models of Plinian eruption columns and pyroclastic flows. J. Geophys. Res. 94, 1867–1887 (1989).

    Article  ADS  Google Scholar 

  3. Dobran, F., Neri, A. & Macedonio, G. Numerical simulation of collapsing volcanic columns. J. Geophys. Res. 98, 4231–4259 (1993).

    Article  ADS  Google Scholar 

  4. Neri, A. & Macedonio, G. Numerical simulation of collapsing volcanic columns with particles of two sizes. J. Geophys. Res. 101, 8153–8174 (1996).

    Article  ADS  Google Scholar 

  5. Oberhuber, J. M., Herzog, M., Graf, H. F. & Schwanke, K. Volcanic plume simulation on large scales. J. Volcanol. Geotherm. Res. 87, 29–53 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Self, S., Wilson, L. & Nairn, I. A. Vulcanian eruption mechanisms. Nature 277, 440–443 (1979).

    Article  ADS  Google Scholar 

  7. Turcotte, D. L., Ockendon, H., Ockendon, J. R. & Cowley, S. J. A mathematical model of Vulcanian eruptions. Geophys. J. Int. 103, 211–217 (1990).

    Article  ADS  Google Scholar 

  8. Fagents, S. A. & Wilson, L. Explosive volcanic eruptions—VII. The ranges of pyroclastics ejected in transient volcanic explosions. Geophys. J. Int. 113, 359–370 (1993).

    Article  ADS  Google Scholar 

  9. Woods, A. W. A model of Vulcanian explosions. Nucl. Eng. Des. 155, 345–357 (1995).

    Article  CAS  Google Scholar 

  10. Kieffer, S. W. Fluid dynamics of the May 18 blast at Mount St. Helens. US Geol. Surv. Prof. Pap. 1250, 379–400 (1981).

    Google Scholar 

  11. Wohletz, K. H., McGetchin, T. R., Sandford, M. T. & Jones, E. M. Hydrodynamic aspects of caldera-forming eruptions: numerical models. J. Geophys. Res. 89, 8269–8285 (1984).

    Article  ADS  Google Scholar 

  12. Neri, A., Di Muro, A. & Rosi, M. Mass partition during collapsing and transitional columns by using numerical simulations. J. Volcanol. Geotherm. Res. (in the press).

  13. Neri, A. Multiphase Flow Modelling and Simulation of Explosive Volcanic Eruptions. Thesis, Illinois Inst. Technol. (1998).

    Google Scholar 

  14. Neri, A., Macedonio, G., Gidaspow, D. & Esposti Ongaro, T. Multiparticle Simulation of Collapsing Volcanic Columns and Pyroclastic Flows (Volcanic Simulation Group Report 2001–2, Instituto Nazionale di Geofisica e Vulcanologia, Pisa, 2001).

    Google Scholar 

  15. Amsden, A. A. & Harlow, F. H. KACHINA: An Eulerian Computer Program for Multifield Fluid Flows (Report LA-5680, Los Alamos National Laboratory, Los Alamos, 1974).

    Book  Google Scholar 

  16. Rivard, W. C. & Torrey, M. D. K-FIX: A Computer Program for Transient, Two-dimensional, Two-fluid Flow (Report LA-NUREG-6623, Los Alamos National Laboratory, Los Alamos, 1977).

    Google Scholar 

  17. Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic, New York, 1994).

    MATH  Google Scholar 

  18. Voight, B. et al. Magma flow instability and cyclic activity at Soufrière Hills Volcano, Montserrat. Science 283, 1138–1142 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Explosive volcanic eruptions IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  20. Sparks, R. S. J. Causes and consequences of pressurisation in lava dome eruptions. Earth Planet. Sci. Lett. 150, 177–189 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Devine, J. D., Rutherford, M. J. & Barclay, J. Changing magma conditions and ascent rates during the Soufrière Hills eruption on Montserrat. GSA Today 8, 2–7 (1998).

    Google Scholar 

  22. Barclay, J. et al. Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufrière Hills magma. Geophys. Res. Lett. 25, 3437–3440 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R. & Brewer, T. S. Remobilization of andesite magma by intrusion of mafic magma at the Soufrière Hills Volcano, Montserrat, West Indies. J. Petrol. 41, 21–42 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Jaupart, C. & Allègre, C. J. Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet. Sci. Lett. 102, 413–429 (1991).

    Article  ADS  Google Scholar 

  25. Druitt, T. H. et al. The Explosive Eruptions of August 1997 (Special Report 04, Montserrat Volcano Observatory, Salem, Montserrat, 1998).

    Google Scholar 

  26. Hoblitt, R. P. Observations of the eruptions of July 22 and August 7 1980 at Mount St Helens, Washington. US Geol. Surv. Prof. Pap. 1335, (1986).

  27. Wolf, T. Der Cotopaxi und seine letzte Eruption am 26 Juni 1877. Neues Jb. Miner. Geol. Paläont. 113–167 (1878).

  28. Taylor, G. A. The 1951 eruption of Mount Lamington, Papua. Aust. Bur. Min. Resour. Geol. Geophys. Bull. 38, 1–117 (1958).

    Google Scholar 

  29. Formenti, Y. & Druitt, T. H. in Abstracts and Addresses of the IAVCEI General Assembly 2000 232 (Volcanological Survey of Indonesia, Bandung, Indonesia, 2000).

    Google Scholar 

  30. Melnik, O. & Sparks, R. S. J. Nonlinear dynamics of lava dome extrusion. Nature 402, 37–41 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at Montserrat Volcano Observatory for their assistance, especially C. Bonadonna, T. Druitt, C. Harford, R. Herd, R. Luckett and R.E.A. Robertson, our colleagues during the August explosions. Support for monitoring was provided by the Department for International Development (UK), the British Geological Survey (BGS), the Seismic Research Unit of the University of the West Indies, and the US Geological Survey (USGS). A.C. and B.V. acknowledge support from the US NSF. A.N. and G.M. were assisted by the Istituto Nazionale di Geofisica e Vulcanologia, and Gruppo Nazionale per la Vulcanologia INGV, Italy. B.V. was a Senior Scientist at Montserrat in 1997 with BGS, and was also affiliated with the USGS Volcano Hazards Program. We thank M. Rutherford for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Clarke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A., Voight, B., Neri, A. et al. Transient dynamics of vulcanian explosions and column collapse. Nature 415, 897–901 (2002). https://doi.org/10.1038/415897a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415897a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing