Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poleward heat transport by the atmospheric heat engine

Abstract

The atmospheric heat transport on Earth from the Equator to the poles is largely carried out by the mid-latitude storms. However, there is no satisfactory theory to describe this fundamental feature of the Earth's climate1,2. Previous studies have characterized the poleward heat transport as a diffusion by eddies of specified horizontal length and velocity scales, but there is little agreement as to what those scales should be3,4,5,6,7. Here we propose instead to regard the baroclinic zone—the zone of strong temperature gradients and active eddies—as a heat engine which generates eddy kinetic energy by transporting heat from a warmer to a colder region. This view leads to a new velocity scale, which we have tested along with previously proposed length and velocity scales, using numerical climate simulations in which the eddy properties have been varied by changing forcing and boundary conditions. The experiments show that the eddy velocity varies in accordance with the new scale, while the size of the eddies varies with the well-known Rhines β-scale. Our results not only give new insight into atmospheric eddy heat transport, but also allow simple estimates of the intensities of mid-latitude storms, which have hitherto only been possible with expensive general circulation models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Predicted length scales versus diagnosed eddy length scale Ldisp = \(\overline{v′T′}\)/(k\(\overline{T̄}\)y|v′|).
Figure 2: Predicted velocity scales versus diagnosed eddy velocity scale |v′|.
Figure 3: Parametrized heat flux versus heat flux diagnosed directly from the GCM.

References

  1. 1

    Pierrehumbert, R. T. & Swanson, K. L. Baroclinic instability. Annu. Rev. Fluid Mech. 27, 419–467 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Held, I. M. The macroturbulence of the troposphere. Tellus A 51, 59–70 (1999).

    ADS  Article  Google Scholar 

  3. 3

    Green, J. S. Transfer properties of the large scale eddies and the general circulation of the atmosphere. Q. J. R. Meteorol. Soc. 96, 157–185 (1970).

    ADS  Article  Google Scholar 

  4. 4

    Stone, P. H. A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29, 405–418 (1972).

    ADS  Article  Google Scholar 

  5. 5

    Branscome, L. E. A parameterization of transient eddy heat flux on a beta plane. J. Atmos. Sci. 41, 2508–2521 (1983).

    ADS  Article  Google Scholar 

  6. 6

    Held, I. M. & Larichev, V. D. A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53, 946–952 (1996).

    ADS  Article  Google Scholar 

  7. 7

    Haine, T. W. N. & Marshall, J. Gravitational, symmetric and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28, 634–658 (1998).

    ADS  Article  Google Scholar 

  8. 8

    Barry, L., Thuburn, J. & Craig, G. C. GCM tests of some possible dynamical constraints on the mid-latitude atmosphere: The v′-T′ correlation, PV homogenisation and the dividing isentrope. Q. J. R. Meteorol. Soc. (submitted).

  9. 9

    Pavan, V. & Held, I. M. The diffusive approximation for eddy fluxes in baroclinically unstable jets. J. Atmos. Sci. 53, 1262–1272 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Eady, E. T. Long waves & cyclone waves. Tellus 1, 33–52 (1949).

    MathSciNet  Article  Google Scholar 

  11. 11

    Charney, J. G. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4, 135–162 (1947).

    MathSciNet  Article  Google Scholar 

  12. 12

    Held, I. M. The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterisation. J. Atmos. Sci. 35, 572–576 (1978).

    ADS  Article  Google Scholar 

  13. 13

    Stone, P. H. & Yao, M.-S. Development of a 2-dimensional zonally averaged statistical-dynamic model. 3. The parameterisation of eddy fluxes of heat and moisture. J. Clim. 3, 726–740 (1990).

    ADS  Article  Google Scholar 

  14. 14

    Charney, J. G. Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971).

    ADS  Article  Google Scholar 

  15. 15

    Salmon, R. Lectures on Geophysical Fluid Dynamics (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  16. 16

    Larichev, V. D. & Held, I. M. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25, 2285–2297 (1995).

    ADS  Article  Google Scholar 

  17. 17

    Rhines, P. B. Waves and turbulence on a beta-plane. J. Fluid. Mech. 69, 417–443 (1975).

    ADS  Article  Google Scholar 

  18. 18

    James, I. N. Introduction to Circulating Atmospheres (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  19. 19

    Golitsyn, G. S. A similarity approach to the general circulation of planetary atmospheres. Icarus 13, 1–24 (1970).

    ADS  Article  Google Scholar 

  20. 20

    Stone, P. H. & Miller, D. A. Empirical relations between seasonal changes in meridional temperature gradients and meridional fluxes of heat. J. Atmos. Sci. 37, 1708–1721 (1980).

    ADS  Article  Google Scholar 

  21. 21

    Vallis, G. K. Numerical studies of eddy transport properties in eddy-resolving and parameterised models. Q. J. R. Meteorol. Soc. 114, 183–204 (1988).

    ADS  Article  Google Scholar 

  22. 22

    Stone, P. H. & Branscome, L. Diabatically forced, nearly inviscid eddy regimes. J. Atmos. Sci. 49, 355–367 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Panetta, R. L. Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 29, 2073–2106 (1993).

    ADS  Article  Google Scholar 

  24. 24

    James, I. N. Two parameterisations of the temperature flux due to baroclinic waves. Q. J. R. Meteorol. Soc. 123, 1–16 (1997).

    MathSciNet  Google Scholar 

  25. 25

    Visbeck, M., Marshall, J. & Haine, T. Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr. 27, 381–402 (1997).

    ADS  Article  Google Scholar 

  26. 26

    Forster, P. M. de F., Blackburn, M., Glover, R. & Shine, K. P. An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim. Dyn. 16, 833–849 (2000).

    Article  Google Scholar 

  27. 27

    Barry, L. Predicting Eddy Heat Transport in the Troposphere Thesis, Univ. Reading (2000).

    Google Scholar 

  28. 28

    Boer, G. & Denis, B. Numerical convergence of the dynamics of a GCM. Clim. Dyn. 13, 359–374 (1997).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George C. Craig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barry, L., Craig, G. & Thuburn, J. Poleward heat transport by the atmospheric heat engine. Nature 415, 774–777 (2002). https://doi.org/10.1038/415774a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing