Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion

Abstract

Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane1,2,3,4. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes5,6. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SNARE complex formation in solution is not enhanced by calcium.
Figure 2: Synaptic vesicles fuse with target membranes in a calcium- and SNARE-dependent manner.
Figure 3: Availability of SNAREs in biological membranes for complex formation.
Figure 4: Apposition of vesicular and target membranes drives SNARE complex formation and fusion.

Similar content being viewed by others

References

  1. Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  CAS  Google Scholar 

  2. Sudhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Lin, R. C. & Scheller, R. H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16, 19–49 (2000).

    Article  CAS  Google Scholar 

  4. Kelly, R. B. in Neurotransmitter Release (ed. Bellen, H. J.) 1–33 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  5. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  7. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  8. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  9. Elferink, L. A. & Scheller, R. H. Synaptic vesicle proteins and regulated exocytosis. Prog. Brain Res. 105, 79–85 (1995).

    Article  CAS  Google Scholar 

  10. Fernandez-Chacon, R. & Sudhof, T. C. Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. Annu. Rev. Physiol. 61, 753–776 (1999).

    Article  CAS  Google Scholar 

  11. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Popov, S. V. & Poo, M. M. Synaptotagmin: a calcium-sensitive inhibitor of exocytosis? Cell 73, 1247–1249 (1993).

    Article  CAS  Google Scholar 

  13. Hua, S. Y. & Charlton, M. P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nature Neurosci. 2, 1078–1083 (1999).

    Article  CAS  Google Scholar 

  14. Tolar, L. A. & Pallanck, L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci. 18, 10250–10256 (1998).

    Article  CAS  Google Scholar 

  15. Montecucco, C. & Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28, 423–472 (1995).

    Article  CAS  Google Scholar 

  16. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  17. Calakos, N. & Scheller, R. H. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 24534–24537 (1994).

    CAS  PubMed  Google Scholar 

  18. McMahon, H. T. et al. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl Acad. Sci. USA 93, 4760–4764 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl Acad. Sci. USA 97, 9695–9700 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Bai, J., Earles, C. A., Lewis, J. L. & Chapman, E. R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem. 275, 25427–25435 (2000).

    Article  CAS  Google Scholar 

  21. Viguera, A. R., Mencia, M. & Goni, F. M. Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Biochemistry 32, 3708–3713 (1993).

    Article  CAS  Google Scholar 

  22. Meyuhas, D., Nir, S. & Lichtenberg, D. Aggregation of phospholipid vesicles by water-soluble polymers. Biophys. J. 71, 2602–2612 (1996).

    Article  CAS  Google Scholar 

  23. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  24. Capogna, M., McKinney, R. A., O'Connor, V., Gahwiler, B. H. & Thompson, S. M. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J. Neurosci. 17, 7190–7202 (1997).

    Article  CAS  Google Scholar 

  25. McCammon, J. A. A speed limit for protein folding. Proc. Natl Acad. Sci. USA 93, 11426–11427 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Wittung-Stafshede, P., Lee, J. C., Winkler, J. R. & Gray, H. B. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein. Proc. Natl Acad. Sci. USA 96, 6587–6590 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Perin, M. S. et al. Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J. Biol. Chem. 266, 615–622 (1991).

    CAS  PubMed  Google Scholar 

  28. Davletov, B., Perisic, O. & Williams, R. L. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096 (1998).

    Article  CAS  Google Scholar 

  29. Zhang, X., Rizo, J. & Sudhof, T. C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  Google Scholar 

  30. Davletov, B. A. et al. Vesicle exocytosis stimulated by α-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J. 17, 3909–3920 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. McMahon for syntaxin and synaptobrevin plasmids and H. Hirling for advice on anti-SNAP-25 immunochromatography. K.H. was supported in part by the University of Cambridge MB/PhD Programme. A.S. and S.F. were supported by postdoctoral fellowships from the Royal Society and Wellcome Trust, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazbek Davletov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Carroll, J., Fedorovich, S. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002). https://doi.org/10.1038/415646a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415646a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing