Genome shuffling leads to rapid phenotypic improvement in bacteria

Abstract

For millennia, selective breeding, on the basis of biparental mating, has led to the successful improvement of plants and animals to meet societal needs1. At a molecular level, DNA shuffling mimics, yet accelerates, evolutionary processes, and allows the breeding and improvement of individual genes and subgenomic DNA fragments. We describe here whole-genome shuffling; a process that combines the advantage of multi-parental crossing allowed by DNA shuffling with the recombination of entire genomes normally associated with conventional breeding. We show that recursive genomic recombination within a population of bacteria can efficiently generate combinatorial libraries of new strains. When applied to a population of phenotypically selected bacteria, many of these new strains show marked improvements in the selected phenotype. We demonstrate the use of this approach through the rapid improvement of tylosin production from Streptomyces fradiae. This approach has the potential to facilitate cell and metabolic engineering and provide a non-recombinant alternative to the rapid production of improved organisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Asexual versus sexual evolution.
Figure 2: Genome shuffling versus classical strain improvement.

References

  1. 1

    Burbank, L., Whitson, J., John, R., Williams, H. S. & Society, L. B. Luther Burbank, his Methods and Discoveries and their Practical Application (Luther Burbank, New York, 1914).

    Google Scholar 

  2. 2

    Darwin, C. On the Origin of Species by Natural Selection, or the Preservation of Favored Races in the Struggle for Life (John Murray, London, 1859).

    Google Scholar 

  3. 3

    Ness, J. E. et al. DNA shuffling of subgenomic sequences of subtilisin. Nature Biotechnol. 17, 893–896 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Aharonowitz, Y. & Cohen, G. The Microbiological production of pharmaceuticals. Sci. Am. 245, 141–152 (1981).

    Article  Google Scholar 

  5. 5

    Demain, A. L. & Solomon, N. A. (eds) Manual of Industrial Microbiology and Biotechnology (ASM, Washington, 1986).

    Google Scholar 

  6. 6

    Vinci, V. A. & Byng, G. in Manual of Industrial Microbiology and Biotechnology (eds Demain, A. L. & Davie, J. E.) 103–113 (ASM, Washington, 1999).

    Google Scholar 

  7. 7

    Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl Acad. Sci. USA 91, 10747–10751 (1994).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Christians, F. C., Scapozza, L., Crameri, A., Folkers, G. & Stemmer, W. P. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nature Biotechnol. 17, 259–264 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Baltz, R. H. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J. Gen. Microbiol. 107, 93–102 (1978).

    CAS  Article  Google Scholar 

  10. 10

    Hopwood, D. A., Wright, H. M., Bibb, M. J. & Cohen, S. N. Genetic recombination through protoplast fusion in Streptomyces. Nature 268, 171–174 (1977).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hopwood, D. A. & Wright, H. M. Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor. J. Gen. Microbiol. 111, 137–143 (1979).

    CAS  Article  Google Scholar 

  12. 12

    Hopwood, D. A. & Wright, H. M. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol. Gen. Genet. 162, 307–317 (1978).

    CAS  Article  Google Scholar 

  13. 13

    Baltz, R. H. & Seno, E. T. Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu. Rev. Microbiol. 42, 547–574 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Baltz, R. H. in Manual of Industrial Microbiology and Biotechnology (Am. Soc. Microbiol., Washington, 1986).

    Google Scholar 

  15. 15

    Stratigopoulos, G. & Cundliffe, E. Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem. Biol. 1, (in the press).

  16. 16

    Baltz, R. H. in Biotechnology of Antibiotics (ed. Strohl, W. R.) 49–62 (Marcel Dekker, New York, 1997).

    Google Scholar 

  17. 17

    Hamlyn, P. F. & Ball, C. in Genetics of Industrial Microorganisms 185–191 (American Society for Microbiology, Washington, 1979).

    Google Scholar 

  18. 18

    Hopwood, D. A. in Genetics of Industrial Microorganisms 1–9 (American Society for Microbiology, Washington, 1979).

    Google Scholar 

  19. 19

    Hopwood, D. A. & Chater, K. F. Fresh approaches to antibiotic production. Phil. Trans. R. Soc. Lond. B 290, 313–328 (1980).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ikeda, H., Inoue, M. & Omura, S. Improvement of macrolide antibiotic-producing streptomycete strains by the regeneration of protoplasts. J. Antibiot. (Tokyo) 36, 283–288 (1983).

    CAS  Article  Google Scholar 

  21. 21

    Del Cardayre, S. B. et al. Evolution of whole cells and organisms by recursive sequence recombination. International Patent Application No. WO 00/04190. (2000).

  22. 22

    Hopwood, D. A. & Wright, H. M. Bacterial protoplast fusion. Mol. Gen. Genet. 162, 307–317 (1978).

    CAS  Article  Google Scholar 

  23. 23

    Keiser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, 2000).

    Google Scholar 

  24. 24

    Baltz, R. H. & Seno, E. T. Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20, 214–225 (1981).

    CAS  Article  Google Scholar 

  25. 25

    Saliwanchik, R. in Manual of Industrial Microbiology and Biotechnology (eds Demain, A. L. & Solomon, N. A.) 410–435 (Am. Soc. Microbiol. Washington, 1986).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Hopwood for the S. coelicolor strains, E. Lilly for S. fradiae SF1 and SF21, R. Baltz, E. Cundliffe, G. Huisman, V. Gavrilovic, R. Patnaik, M. Lassner, T. Cox and S. Louie for technical discussion and assistance, and the National Institute of Standards and Technology Advanced Technology Program for financial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen B. del Cardayré.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Perry, K., Vinci, V. et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644–646 (2002). https://doi.org/10.1038/415644a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing