Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Net transfer of carbon between ectomycorrhizal tree species in the field


Different plant species can be compatible with the same species of mycorrhizal fungi1,2 and be connected to one another by a common mycelium3,4. Transfer of carbon3,4,5, nitrogen6,7 and phosphorus8,9 through interconnecting mycelia has been measured frequently in laboratory experiments, but it is not known whether transfer is bidirectional, whether there is a net gain by one plant over its connected partner, or whether transfer affects plant performance in the field10,11. Laboratory studies using isotope tracers show that the magnitude of one-way transfer can be influenced by shading of ‘receiver’ plants3,5, fertilization of ‘donor’ plants with phosphorus12, or use of nitrogen-fixing donor plants and non-nitrogen-fixing receiver plants13,14, indicating that movement may be governed by source–sink relationships. Here we use reciprocal isotope labelling in the field to demonstrate bidirectional carbon transfer between the ectomycorrhizal tree species Betula papyrifera and Pseudotsuga menziesii, resulting in net carbon gain by P. menziesii. Thuja plicata seedlings lacking ectomycorrhizae absorb small amounts of isotope, suggesting that carbon transfer between B. papyrifera and P. menziesii is primarily through the direct hyphal pathway. Net gain by P. menziesii seedlings represents on average 6% of carbon isotope uptake through photosynthesis. The magnitude of net transfer is influenced by shading of P. menziesii, indicating that source–sink relationships regulate such carbon transfer under field conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean (± s.e.) net transfer from B. papyrifera to P. menziesii in deep shade, partial shade and full ambient sunlight in the first (two-year-old seedlings, open circles) and second (three-year-old seedlings, filled circles) experiment years.

Similar content being viewed by others


  1. Molina, R., Massicotte, H. & Trappe, J. M. in Mycorrhizal Functioning: An Integrative Plant–Fungal Progess(ed. Allen, M. F.) 357–423 (Chapman and Hall, New York, (1992)).

    Google Scholar 

  2. Massicotte, H. G., Molina, R., Luoma, D. L. & Smith, J. E. Biology of the ectomycorrhizal genus, Rhizopogon. II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in monoculture and dual culture. New Phytol. 126, 677–690 (1994).

    Article  Google Scholar 

  3. Francis, R. & Read, D. J. Direct transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium. Nature 307, 53–56 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of ectomycorrhizal roots with special reference to their role in forming interplant connections and providing pathways for assimulate and water transport. Plant Soil 71, 433–443 (1983).

    Article  Google Scholar 

  5. Finlay, R. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labeled carbon between plants interconnected by a common mycelium. New Phytol. 103, 143–156 (1986).

    Article  Google Scholar 

  6. Arnebrant, K., Ek, H., Finlay, R. D. & Soderstrom, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 130, 231–242 (1993).

    Article  Google Scholar 

  7. Bethlenfalvay, G. J., Reyes-Solis, M. G., Camel, S. B. & Ferrera-Cerrato, R. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiologia Plantarum 82, 423–432 (1991).

    Article  CAS  Google Scholar 

  8. Newman, E. I. & Eason, W. R. Rates of phosphorus transfer within and between ryegrass (Lolium perenne) plants. Funct. Ecol. 7, 242–248 (1993).

    Article  Google Scholar 

  9. Wittingham, J. & Read, D. J. Vesicular-arbascular mycorrhiza in natural vegetation systems III. Nutrient transfer between plants with mycorrhizal connections. New Phytol. 90, 277–284 (1982).

    Article  Google Scholar 

  10. Newman, E. I. Mycorrhizal links between plants: their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).

    Article  Google Scholar 

  11. Miller, S. L. & Allen, E. B. in Mycorrhizal Functioning: An Integrative Plant–Fungal Process(ed. Allen, M. F.) 301–332 (Chapman and Hall, New York, (1992)).

    Google Scholar 

  12. Ritz, K. & Newman, E. I. Nutrient transport between ryegrass plants differing in nutrient status. Oecologia 70, 128–131 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Frey, B. & Schüepp. H. Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular arbuscular mycorrhizal hyphae. New Phytol. 125, 447–454 (1992).

    Article  Google Scholar 

  14. Ekblad, A. & Huss-Danell, K. Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytol. 131, 453–459 (1995).

    Article  Google Scholar 

  15. Perry, D. A., Bell, T. & Amaranthus, M. P. in The Ecology of Mixed-Species Stands of Trees(eds Cannell, M. G. R., Malcom, D. C. & Robertson, P. A.) 151–179 (Cambridge Univ. Press, (1992)).

    Google Scholar 

  16. Perry, D. A., Amaranthus, M. P., Borchers, J. G., Borchers, S. L. & Brainerd, R. E. Bootstrapping in ecosystems. Bioscience 39, 230–237.

  17. Read, D. J. in Biodiversity and Ecosystem Function(eds Schulze, E.-D. & Mooney, H. A.) 181–209 (Springer, Berlin, (1994)).

    Book  Google Scholar 

  18. Tilman, D. Dynamics and Structure of Plant Communities(Princeton Univ. Press, NJ, (1988)).

    Google Scholar 

  19. Shulze, E.-D. & Mooney, H. A. in Biodiversity and Ecosystem Function(eds Schulze, E.-D. & Mooney, H. A.) 497–510 (Springer, Berlin, (1994)).

    Book  Google Scholar 

  20. Simard, S. W. thesis, Oregon State Univ.((1995)).

    Google Scholar 

  21. Pearcy, R. al. Carbon gain by plants in natural environments. Bioscience 37, 21–28 (1987).

    Article  Google Scholar 

  22. Smith, S. E. & Smith, F. A. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 1–38 (1990).

    Article  CAS  Google Scholar 

  23. Abuzinadah, R. A. & Read, D. J. Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth.). Trees 3, 17–23 (1989).

    Article  Google Scholar 

  24. Alpert, P., Warembourg, F. R. & Roy, J. Transport of carbon among connected ramets of Eichhornia crassipes (Pontederiaceae) at normal and high levels of CO2. Am. J. Bot. 78, 1459–1466 (1991).

    Article  CAS  Google Scholar 

  25. Watkins, N. K., Fitter, A. H., Graves, J. D. & Robinson, D. Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol. Biochem. 28, 471–477 (1996).

    Article  CAS  Google Scholar 

  26. Waters, J. R. & Borowicz, V. A. Effect of clipping, benomyl, and genet on 14C transfer between mycorrhizal plants. Oikos 71, 246–252 (1994).

    Article  CAS  Google Scholar 

  27. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influence biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Perry, D. A., Margolis, H., Choquette, C., Molina, R. & Trappe, J. M. Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol. 112, 501–511 (1989).

    Article  CAS  Google Scholar 

  29. Boutton, T. W. in Carbon Isotope Techniques(eds Coleman, D. C. & Fry, B.) 155–170 (Academic, San Diego, (1991)).

    Book  Google Scholar 

  30. Warembourg, F. R. & Kummerow, J. in Carbon Isotope Techniques(eds Coleman, D. C. & Fry, B.) 11–37 (Academic, San Diego, (1991)).

    Book  Google Scholar 

Download references


We thank B. Danielson and C. Y. Li for review of the experiment designs; J. Smith and D. McKay for help with identification of ectomycorrhizal morphotypes and assistance in the greenhouse; C. Weicker and C. Gordon for assistance in the field; B. Zimonick, A. Vyse and P. G. Comeau for help and support; the staff at the Kamloops Forest Region of the British Columbia Ministry of Forests and Forestry Science Laboratory at Oregon State University for assistance; and S. Smith and R. Finlay for comments on the manuscript. This work was supported by the British Columbia Ministry of Forests and the Canada-British Columbia Partnership Agreement on Forest Resource Development (FRDA II).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Suzanne W. Simard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simard, S., Perry, D., Jones, M. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing