Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topologically protected quantum bits using Josephson junction arrays


All physical implementations of quantum bits (or qubits, the logical elements in a putative quantum computer) must overcome conflicting requirements: the qubits should be manipulable through external signals, while remaining isolated from their environment. Proposals based on quantum optics emphasize optimal isolation1,2,3, while those following the solid-state route exploit the variability and scalability of nanoscale fabrication techniques4,5,6,7,8. Recently, various designs using superconducting structures have been successfully tested for quantum coherent operation9,10,11, however, the ultimate goal of reaching coherent evolution over thousands of elementary operations remains a formidable task. Protecting qubits from decoherence by exploiting topological stability is a qualitatively new proposal12 that holds promise for long decoherence times, but its physical implementation has remained unclear. Here we show how strongly correlated systems developing an isolated twofold degenerate quantum dimer liquid ground state can be used in the construction of topologically stable qubits; we discuss their implementation using Josephson junction arrays. Although the complexity of their architecture challenges the technology base available today, such topological qubits greatly benefit from their built-in fault-tolerance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dimers on a triangular lattice forming liquid (main panel), staggered, and columnar configurations.
Figure 2: Splitting Δd of the ground-state energies under the action of a disorder potential of strength d for a 6 * 5 torus and a 6 * 5 cylinder (top inset; periodicity is along x with Lx = 6) testing the susceptibility of the degenerate ground states to local perturbations.
Figure 3: Josephson junction arrays forming triangular (JJT) and Kagome (JJK) lattices and emulating dimer systems.
Figure 4: Topologically protected qubits.


  1. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  CAS  Article  Google Scholar 

  2. Monroe, C., Meekhof, D., King, B., Itano, W. & Wineland, D. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Turchette, Q., Hood, C., Lange, W., Mabushi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logics. Phys. Rev. Lett. 75, 4710–4713 (1995).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  CAS  Article  Google Scholar 

  5. Shnirman, A., Schön, G. & Hermon, Z. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett. 79, 2371–2374 (1997).

    ADS  CAS  Article  Google Scholar 

  6. Averin, D. V. Adiabatic quantum computation with Cooper pairs. Solid State Commun. 105, 659–664 (1998).

    ADS  CAS  Article  Google Scholar 

  7. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    CAS  Article  Google Scholar 

  8. Ioffe, L., Geshkenbein, V. B., Feigel'man, M. V., Fauchère, A. L. & Blatter, G. Environmentally decoupled s-wave–d-wave–s-wave Josephson junctions for quantum computing. Nature 398, 678–681 (1999).

    ADS  Article  Google Scholar 

  9. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS  CAS  Article  Google Scholar 

  10. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).

    ADS  CAS  Article  Google Scholar 

  11. van der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000).

    ADS  CAS  Article  Google Scholar 

  12. Kitaev, A. Yu. Fault-tolerant quantum computation by anyons. Preprint quant-ph/9707021 at 〈〉 (1997).

  13. Preskill, J. in Introduction to Quantum Computation and Information (eds Lo, H.-K., Popescu, S. & Spiller, T.) 213–269 (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  14. Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

    ADS  CAS  Article  Google Scholar 

  15. Rokhwar, D. S. & Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).

    ADS  Article  Google Scholar 

  16. Wen, X. G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664–2672 (1991).

    ADS  CAS  Article  Google Scholar 

  17. Ioffe, L. B. & Larkin, A. I. Superconductivity in the liquid-dimer valence-bond state. Phys. Rev. B 40, 6941–6947 (1989).

    ADS  CAS  Article  Google Scholar 

  18. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  CAS  Article  Google Scholar 

  19. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    ADS  CAS  Article  Google Scholar 

  20. Misguich, G., Lhuillier, C., Bernu, B. & Waldtmann, C. Spin-liquid phase of the multiple-spin exchange Hamiltonian on the triangular lattice. Phys. Rev. B 60, 1064–1074 (1999).

    ADS  CAS  Article  Google Scholar 

  21. Sachdev, S. Kagome-acute- and triangular-lattice Heisenberg antiferromagnets. Phys. Rev. B 45, 12377–12396 (1992).

    ADS  CAS  Article  Google Scholar 

  22. Grabert, H. & Devoret, M. H. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, 1992).

    Book  Google Scholar 

  23. Fradkin, E. Field Theories of Condensed Matter Systems (Addison-Wesley, Redwood City, 1991).

    MATH  Google Scholar 

  24. Moessner, R., Sondhi, S. L. & Fradkin, E. Short-ranged RVB physics, quantum dimer models and Ising gauge theories. Preprint cond-mat/0103396 at 〈〉 (2001).

  25. Fradkin, E. & Shenker, S. H. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682 (1979).

    ADS  CAS  Article  Google Scholar 

Download references


We thank V. Geshkenbein for discussions. We acknowledge financial support through the SCOPES programme (Swiss Federal Department of Foreign Affairs and Swiss National Foundation), the Dutch Organization for Fundamental Research (NWO), the Russian Foundation for Basic Research, the programme ‘Quantum Macrophysics’ of the Russian Academy of Science, and the Russian Ministry of Science. Computations were carried out on the Beowulfcluster Asgard at ETHZ.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. Blatter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ioffe, L., Feigel'man, M., Ioselevich, A. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing