Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of grouping in contextual modulation

Abstract

Perception of a visual target and the responses of cortical neurons can be strongly influenced by a context surrounding the target1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27. This observation relates to the fundamental issue of how cortical neurons code objects of the external world. In high-contrast regimes, embedding a target in an iso-oriented context reduces neural responses and deteriorates performance in psychophysical experiments. Performance from orthogonal surrounds is better than that from iso-oriented ones1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. This contextual interference is often postulated to be caused by long- or short-range interactions between neurons tuned to orientation. Here we show, using a new illusion called ‘shine-through’ as a sensitive psychophysical probe, that the orientation difference between target and context does not determine performance. Instead, contextual modulation depends on the overall spatial structure of the context. We propose that contextual suppression vanishes if the contextual elements are grouped to an independent and coherent object.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The shine-through effect.
Figure 2: Contextual interference cannot be predicted by contextual orientation.
Figure 3: Independence of the context matters.
Figure 4: Shine through interferes with shine through.

Similar content being viewed by others

References

  1. Knierim, J. J. & van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophys. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  2. Li, W., Thier, P. & Wehrhahn, C. Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J. Neurophys. 83, 941–954 (2000).

    Article  CAS  Google Scholar 

  3. Nothdurft, H.-C., Gallant, J. L. & van Essen, D. C. Response modulation by texture surround in primate area V1: Correlates of pop-out under anesthesia. Vis. Neurosci. 16, 15–34 (1999).

    Article  CAS  Google Scholar 

  4. Herzog, M. H. & Koch, C. Seeing properties of an invisible element: feature inheritance and shine-through. Proc. Natl Acad. Sci. USA 98, 4271–4275 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Herzog, M. H., Fahle, M. & Koch, C. Spatial aspects of object formation revealed by a new illusion, shine-through. Vis. Res. 41, 2325–2335 (2001).

    Article  CAS  Google Scholar 

  6. Mareschal, I., Sceniak, M. P. & Shapley, M. Contextual influences on orientation discrimination: binding local and global cues. Vis. Res. 41, 1915–1930 (2001).

    Article  CAS  Google Scholar 

  7. Wehrhahn, C., Li, W. & Westheimer, G. Patterns that impair discrimination of orientation in human vision. Perception 25, 1053–1064 (1996).

    Article  CAS  Google Scholar 

  8. Stemmler, M., Usher, M. & Niebur, E. Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science 269, 1877–1880 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Li, Z. Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc. Natl Acad. Sci. USA 96, 10530–10535 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Wolfson, S. S. & Landy, M. S. Long range interactions between oriented texture elements. Vis. Res. 39, 933–945 (1999).

    Article  CAS  Google Scholar 

  11. Nothdurft, H. C. Texture segmentation and pop-out from orientation contrast. Vis. Res. 31, 1073–1078 (1991).

    Article  CAS  Google Scholar 

  12. Cannon, M. W. & Fullenkamp, S. C. Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vis. Res. 31, 1985–1998 (1991).

    Article  CAS  Google Scholar 

  13. Lamme, V. A. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  Google Scholar 

  14. Zipser, K., Lamme, V. A. F. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  Google Scholar 

  15. Caputo, G. The role of the background: Texture segregation and figure-ground segmentation. Vis. Res. 36, 2815–2826 (1996).

    Article  CAS  Google Scholar 

  16. Sengpiel, F., Sen A. & Blakemore, C. Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116, 216–228 (1997).

    Article  CAS  Google Scholar 

  17. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Macknik, S. L. & Livingstone, M. S. Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neurosci. 1, 144–149 (1998).

    Article  CAS  Google Scholar 

  19. Polat, U. & Sagi, D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vis. Res. 33, 993–999 (1993).

    Article  CAS  Google Scholar 

  20. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  21. Levitt, J. B. & Lund, J. S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Bonneh, Y. & Sagi, D. Effects of spatial configuration on contrast detection. Vis. Res. 38, 3541–53 (1998).

    Article  CAS  Google Scholar 

  23. Yu, C. & Levi, D. Surround modulation in human vision unmasked by masking experiments. Nature Neurosci. 3, 724–728 (2000).

    Article  CAS  Google Scholar 

  24. Das, A. & Gilbert, C. D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Chubb, C., Sperling, G. & Solomon, J. A. Texture interactions determine perceived contrast. Proc. Natl Acad. Sci. USA 86, 9631–9635 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Weisstein, N. & Harris, C. S. Visual detection of lines segments: an object-superiority effect. Science 186, 752–755 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Banks, W. P. & White, H. Lateral interference and perceptual grouping in visual detection. Percept. Psychophys. 36, 285–295 (1984).

    Article  CAS  Google Scholar 

  28. Kurylo, D. D. Time course of perceptual grouping. Percept. Psychophys. 59, 142–147 (1997).

    Article  CAS  Google Scholar 

  29. Ernst, U. A., Pawelzik, K. R., Sahar-Pikielny, C. & Tsodyks, M. V. Intracortical origin of visual maps. Nature Neurosci. 4, 431–436 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center of Excellence (SFB) ‘Neurocognition’ of the German Research Council (Deutsche Forschungsgemeinschaft). We thank M. Repnow for technical support; and B. Gillam, C. Eurich, U. Ernst, A. Etzold, B. Zenger, K. Neumann, F. Kandil, J. Solomon, M. Morgan, J. Zanker and U. Schmonsees for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Herzog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, M., Fahle, M. Effects of grouping in contextual modulation. Nature 415, 433–436 (2002). https://doi.org/10.1038/415433a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415433a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing