Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Humans integrate visual and haptic information in a statistically optimal fashion


When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual–haptic percept, for example when judging size, shape or position1,2,3, but in some circumstances the percept is clearly affected by haptics4,5,6,7. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation8,9,10,11,12,13,14,15 to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual–haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Maximum-likelihood estimation integration: two hypothetical situations.
Figure 2: Apparatus and stimuli.
Figure 3: Predictions and experimental data.


  1. Rock, I. & Victor, J. Vision and touch: An experimentally created conflict between the two senses. Science 143, 594–596 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Hay, J. C., Pick, H. L. Jr & Ikeda, K. Visual capture produced by prism spectacles. Psychonomic Sci. 2, 215–216 (1965).

    Article  Google Scholar 

  3. Warren, D. H. & Rossano, M. J. in The Psychology of Touch (eds Heller, M. A. & Schiff, W.) 119–137 (Erlbaum, Hillsdale, New Jersey, 1991).

    Google Scholar 

  4. Power, R. P. The dominance of touch by vision: Sometimes incomplete. Perception 9, 457–466 (1980).

    Article  CAS  Google Scholar 

  5. Welch, R. B. & Warren, D. H. Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88, 638–667 (1980).

    Article  CAS  Google Scholar 

  6. Lederman, S. J. & Abbott, S. G. Texture perception: Studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. J. Exp. Psychol. Hum. Percept. Perform. 7, 902–915 (1981).

    Article  CAS  Google Scholar 

  7. Heller, M. A. Haptic dominance in form perception with blurred vision. Perception 12, 607–613 (1983).

    Article  CAS  Google Scholar 

  8. Clark, J. J. & Yuille, A. L. Data Fusion for Sensory Information Processing Systems (Kluwer Academic, Boston, 1990).

    Book  Google Scholar 

  9. Blake, A., Bülthoff, H. H. & Sheinberg, D. Shape from texture: Ideal observer and human psychophysics. Vision Res. 33, 1723–1737 (1993).

    Article  CAS  Google Scholar 

  10. Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Res. 35, 389–412 (1995).

    Article  CAS  Google Scholar 

  11. Gharamani, Z., Wolpert, D. M. & Jordan, M. I. in Self-organization, Computational Maps, and Motor Control (eds Morasso, P. G. & Sanguineti, V.) 117–147 (Elsevier, Amsterdam, 1997).

    Book  Google Scholar 

  12. Knill, D. C. Discrimination of planar surface slant from texture: Human and ideal observers compared. Vision Res. 38, 1683–1697 (1998).

    Article  CAS  Google Scholar 

  13. Backus, B. T. & Banks, M. S. Estimator reliability and distance scaling in stereoscopic slant perception. Perception 28, 417–442 (1999).

    Article  Google Scholar 

  14. van Beers, R. J., Sittig, A. C. & Denier van der Gon, J. J. Integration of proprioceptive and visual position information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).

    Article  CAS  Google Scholar 

  15. Schrater, P. R. & Kersten, D. How optimal depth cue integration depends on the task. Int. J. Comp. Vis. 40, 71–89 (2000).

    Article  Google Scholar 

  16. Gibson, J. J. Adaptation, after-effect, and contrast in the perception of curved lines. J. Exp. Psychol. 16, 1–31 (1933).

    Article  Google Scholar 

  17. Festinger, L., Burnham, C. A., Ono, H. & Bamber, D. Efference and the conscious experience of perception. J. Exp. Psychol. 74 (4), 1–36 (1967).

    Article  Google Scholar 

  18. Singer, G. & Day, R. H. Visual capture of haptically judged depth. Percept. Psychophys. 5, 315–316 (1969).

    Article  Google Scholar 

  19. Tastevin, J. En partant de l’experience d’Aristote. L’Encephale 1, 57–84 (1937).

    Google Scholar 

  20. Mon-Williams, M., Wann, J. P., Jenkinson, M. & Rushton, K. Synaesthesia in the normal limb. Proc. R. Soc. Lond. B 264, 1007–1010 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Pavani, F., Spence, C. & Driver, J. Visual capture of touch: out-of-the-body experiences with rubber gloves. Psycholog. Sci. 11, 353–359 (2000).

    Article  CAS  Google Scholar 

  22. Heller, M. A. Visual and tactual texture perception: Intersensory cooperation. Percept. Psychophys. 31, 339–344 (1982).

    Article  CAS  Google Scholar 

  23. Banks, M. S. & Backus, B. T. Extra-retinal and perspective cues cause the small range of the induced effect. Vision Res. 38, 187–194 (1998).

    Article  CAS  Google Scholar 

  24. Ernst, M. O., Banks, M. S. & Bülthoff, H. H. Touch can change visual slant perception. Nature Neurosci. 3, 69–73 (2000).

    Article  CAS  Google Scholar 

  25. Peña, J. L. & Konishi, M. Auditory spatial receptive fields created by multiplication. Science 292, 249–252 (2001).

    Article  ADS  Google Scholar 

Download references


We thank M. Landy for comments on the manuscript; and H. Ernst, X. Moncada, C. Alderson and S. Kashiwada for participating as observers. This research was supported by research grants from Air Force Office of Scientific Research and the National Institutes of Health, and by an equipment grant from Silicon Graphics.

Author information

Authors and Affiliations


Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ernst, M., Banks, M. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing