Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds

An Addendum to this article was published on 08 August 2002

Abstract

Conceptual1,2,3,4 and numerical5,6,7,8 models of nitrogen cycling in temperate forests assume that nitrogen is lost from these ecosystems predominantly by way of inorganic forms, such as nitrate and ammonium ions. Of these, nitrate is thought to be particularly mobile, being responsible for nitrogen loss to deep soil and stream waters. But human activities—such as fossil fuel combustion, fertilizer production and land-use change—have substantially altered the nitrogen cycle over large regions9, making it difficult to separate natural aspects of nitrogen cycling from those induced by human perturbations10. Here we report stream chemistry data from 100 unpolluted primary forests in temperate South America. Although the sites exhibit a broad range of environmental factors that influence ecosystem nutrient cycles11,12,13 (such as climate, parent material, time of ecosystem development, topography and biotic diversity), we observed a remarkably consistent pattern of nitrogen loss across all forests. In contrast to findings from forests in polluted regions, streamwater nitrate concentrations are exceedingly low, such that nitrate to ammonium ratios were less than unity, and dissolved organic nitrogen is responsible for the majority of nitrogen losses from these forests. We therefore suggest that organic nitrogen losses should be considered in models of forest nutrient cycling, which could help to explain observations of nutrient limitation in temperate forest ecosystems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Hydrologic nitrogen losses from temperate forest watersheds in 13 areas of South America and 3 areas of eastern North America.
Figure 3: Hydrologic losses of dissolved inorganic and organic nitrogen, DIN and DON, estimated across the range of precipitation inputs to unpolluted forests of South America.

References

  1. Likens, G. E. & Bormann, F. H. Biogeochemistry of a Forested Ecosystem 2nd edn (Springer, New York, 1995).

    Book  Google Scholar 

  2. Aber, J. et al. Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. BioScience 48, 921–34 (1998).

    Article  Google Scholar 

  3. Tamm, C. O. Nitrogen in Terrestrial Ecosystems (Springer, Berlin, 1991).

    Book  Google Scholar 

  4. Stoddard, J. L. in Environmental Chemistry of Lakes and Reservoirs (ed. Baker, L. A.) 223–284 (American Chemical Society, Washington DC, 1994).

    Book  Google Scholar 

  5. Schimel, D. S., Braswell, B. H. & Parton, W. J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc. Natl Acad. Sci. USA 94, 8280–8283 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Rastetter, E. B. et al. Resource optimization and symbiotic nitrogen fixation. Ecosystems 4, 369–388 (2001).

    Article  CAS  Google Scholar 

  7. McGuire, A. D. et al. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Glob. Biogeochem. Cycles 11, 173–189 (1997).

    Article  ADS  CAS  Google Scholar 

  8. McKane, R. B. et al. Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology 78, 1170–1187 (1997).

    Article  Google Scholar 

  9. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  10. Hedin, L. O., Armesto, J. J. & Johnson, A. H. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76, 493–509 (1995).

    Article  Google Scholar 

  11. Jenny, H. Factors of Soil Formation (McGraw-Hill, New York, 1941).

    Book  Google Scholar 

  12. Gorham, E. Factors influencing supply of major ions to inland waters, with special reference to the atmosphere. Geol. Soc. Am. Bull. 72, 795–840 (1961).

    Article  ADS  CAS  Google Scholar 

  13. Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25, 376–381 (1975).

    Article  CAS  Google Scholar 

  14. Nadelhoffer, K. J. et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).

    Article  ADS  CAS  Google Scholar 

  16. Holland, E. A., Dentener, F. J., Braswell, B. H. & Sulzman, J. M. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46, 7–43 (1999).

    CAS  Google Scholar 

  17. Alaback, P. Comparative ecology of temperate rainforests of the Americas along analogous climatic gradients. Rev. Chil. Hist. Nat. 64, 399–412 (1991).

    Google Scholar 

  18. Almeyda, A. E. & Saez, S. F. Recopilación de Datos Climáticos de Chile y Mapas Sinópticos Respectivos (Ministerio de Agricultura, Santiago, Chile, 1958).

    Google Scholar 

  19. Paruelo, J. M., Beltran, A., Jobbagy, E. G., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecologia Austral 8, 85–101 (1998).

    Google Scholar 

  20. Villagran, C. (ed.) The Quaternary of the Lake District of Southern Chile. International Workshop “The Quaternary of Chile” (IGCP-281, Latin American Botanical Network, Santiago, Chile, 1993).

    Google Scholar 

  21. Veblen, T. T., Donoso, C., Kitzberger, T. & Rebertus, A. J. in The Ecology and Biogeography of Nothofagus Forests (eds Veblen, T. T., Hill, R. S. & Read, J.) 293–353 (Yale Univ. Press, New Haven, 1996).

    Google Scholar 

  22. Aguilar, R. & Arnold, R. W. Soil-landscape relationships of a climax forest in the Allegheny High Plateau, Pennsylvania. Soil Sci. Soc. Am. J. 49, 695–701 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Nodvin, S. C., Van Miegroet, H., Lindberg, S. E., Nicholas, N. S. & Johnson, D. W. Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation southern Appalachian watershed. Wat. Air Soil Pollut. 85, 1647–1652 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Goodale, C. L., Aber, J. D. & McDowell, W. H. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3, 433–450 (2001).

    Article  Google Scholar 

  25. Campbell, J. L. et al. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry 49, 123–142 (2000).

    Article  CAS  Google Scholar 

  26. McDowell, W. H., Currie, W. S., Aber, J. D. & Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Wat. Air Soil Pollut. 105, 175–182 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Perakis, S. S. & Hedin, L. O. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82, 2245–2260 (2001).

    Article  Google Scholar 

  28. Sollins, P. et al. The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon. Ecol. Monogr. 50, 261–285 (1980).

    Article  Google Scholar 

  29. Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13, 623–645 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Weathers, K. C., Lovett, G. M., Likens, G. E. & Caraco, N. F. M. Cloudwater inputs of nitrogen to forest ecosystems in southern Chile: Forms, fluxes, and sources. Ecosystems 3, 590–595 (2000).

    Article  CAS  Google Scholar 

  31. Vitousek, P. M., Hedin, L. O., Matson, P. A., Fownes, J. H. & Neff, J. in Successes, Limitations, and Frontiers in Ecosystem Science (eds Pace, M. L. & Groffman, P. M.) 432–451 (Springer, New York, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Nodvin for sharing samples from CO and SF; M. Medina, B. Houlton, J. Armesto, C. Perez, G. Steinhart, J. O'Brien, G. Likens, J. Franklin, O. Sala, G. Lewis, T. Flum, J. Jamison, Corporación Nacional Forestal de Chile and Administración de Parque Nacionales de Argentina for site selection, field assistance and sample collection; M. Brown and K. Lohse for sample analysis; E. Boyer for cartography; and J. Compton, T. Fahey, R. Howarth, K. Lajtha, J. von Fischer, G. Lewis and P. Vitousek for comments on the manuscript. This work is a contribution to the Cordillera Piuchué Ecosystem Study and was supported by the Andrew W. Mellon Foundation, the NASA Earth Systems Science Fellowship Program and the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Perakis.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perakis, S., Hedin, L. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415, 416–419 (2002). https://doi.org/10.1038/415416a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415416a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing