Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone


Neurotransmitters are released by synaptic vesicle fusion at the active zone1,2. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood3. Here we show that RIM1α, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A4,5, interacts with several active zone molecules, including Munc13-1 (ref. 6) and α-liprins7,8, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1α in mice shows that RIM1α is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1α has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and protein analysis of RIM1α knockout mice.
Figure 2: Excitatory and inhibitory synaptic responses to paired-pulse stimulation in mutant mice.
Figure 3: Synaptic plasticity in RIM1α and Rab3A knockout mice.
Figure 4: Synaptic efficacy and release probability at Schaffer collateral/CA1 pyramidal cell synapses in RIM1α and Rab3A knockout mice.
Figure 5: Biochemical definition of RIM1α as a synaptic scaffolding protein.


  1. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969).

    Google Scholar 

  2. Cowan, W. M., Südhof, T. C. & Stevens, C. F. (eds) Synapses (Johns Hopkins Univ. Press, Baltimore, 2001).

    Google Scholar 

  3. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).

    Article  CAS  Google Scholar 

  4. Wang, Y., Okamoto, M., Schmitz, F., Hofman, K. & Südhof, T. C. RIM is a putative Rab3A-effector in regulating synaptic vesicle fusion. Nature 388, 593–598 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Wang, Y., Sugita, S. & Südhof, T. C. The RIM/NIM family of neuronal C2-domain proteins: interactions with Rab3 and a new class of SH3-domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).

    Article  CAS  Google Scholar 

  6. Brose, N., Hofmann, K., Hata, Y. & Südhof, T. C. Mammalian homologues of C. elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25273–25280 (1995).

    Article  CAS  Google Scholar 

  7. Serra-Pages, C., Medley, Q. G., Tang, M., Hart, A. & Streuli, M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J. Biol. Chem. 273, 15611–15620 (1998).

    Article  CAS  Google Scholar 

  8. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    ADS  CAS  Google Scholar 

  9. Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. & McMahan, U. J. The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479–484 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Geppert, M., Goda, Y., Stevens, C. F. & Südhof, T. C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neurosci. 2, 959–964 (1999).

    Article  CAS  Google Scholar 

  12. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nature Neurosci. 2, 965–971 (1999).

    Article  CAS  Google Scholar 

  13. Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Coppola, T. et al. Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J. 18, 5885–5891 (1999).

    Article  CAS  Google Scholar 

  15. Sun, L., Bittner, M. A. & Holz, R. W. Rab3A-binding and secretion-enhancing domains in Rim1 are separate and unique: Studies in adrenal chromaffin cells. J. Biol. Chem. 276, 12911–12917 (2001).

    Article  CAS  Google Scholar 

  16. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biol. 2, 805–811 (2000).

    CAS  PubMed Central  Google Scholar 

  17. Coppola, T. et al. Direct interaction of the rab3 effector rim with Ca2+ channels, snap-25, and synaptotagmin. J. Biol. Chem. 276, 32756–32762 (2001).

    Article  CAS  Google Scholar 

  18. Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  Google Scholar 

  19. Wang, X., Hu, B., Zimmermann, B. & Kilimann, M. W. Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants partially related through N-terminal α-helix motifs. J. Biol. Chem. 276, 32480–32488 (2001).

    Article  CAS  Google Scholar 

  20. Li, C. et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on Rab3A/3C. Neuron 13, 885–898 (1994).

    Article  CAS  Google Scholar 

  21. Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).

    Article  CAS  Google Scholar 

  22. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).

    Article  CAS  Google Scholar 

  23. Castillo, P. E., Schoch, S., Schmitz, F., Südhof, T. C. & Malenka, R. C. RIM1α is required for presynaptic long-term potentiation. Nature 415, 327–330 (2002).

    Article  ADS  CAS  Google Scholar 

  24. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Schlüter, O. M. et al. Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J. Neurosci. 19, 5834–5846 (1999).

    Article  Google Scholar 

  28. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    Article  ADS  CAS  Google Scholar 

Download references


We thank H. Riedesel for help with the RIM1α knockout mice; R. Jahn and N. Brose for antibodies; and N. Brose, Y. Jin and M. Nonet for discussing results before publication. We are grateful to I. Leznicki, A. Roth and E. Borowicz for technical assistance. This study was supported by a fellowship to S.S. from the Deutscher Akademische Austauschdienst and grants from the NIH (R.C.M).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas C. Südhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schoch, S., Castillo, P., Jo, T. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing