Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contribution of Distal-less to quantitative variation in butterfly eyespots


The colour patterns decorating butterfly wings provide ideal material to study the reciprocal interactions between evolution and development. They are visually compelling products of selection, often with a clear adaptive value, and are amenable to a detailed developmental characterization1. Research on wing-pattern evolution and development has focused on the eyespots of the tropical butterfly Bicyclus anynana2. There is quantitative variation for several features of eyespot morphology3,4,5 but the actual genes contributing to such variation are unknown. On the other hand, studies of gene expression patterns in wing primordia have implicated different developmental pathways in eyespot formation6,7,8,9,10,11. To link these two sets of information we need to identify which genes within the implicated pathways contribute to the quantitative variation accessible to natural selection. Here we begin to bridge this gap by demonstrating linkage between DNA polymorphisms in the candidate gene Distal-less (Dll) and eyespot size in B. anynana.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bicyclus anynana selection lines divergent for the size of the dorsal forewing eyespots.
Figure 2: Test for an association between alleles at the Dll locus and dorsal eyespot size in B. anynana.


  1. Nijhout, H. F. The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institute, Washington DC, 1991).

    Google Scholar 

  2. Brakefield, P. M. The evolution–development interface and advances with the eyespot patterns of Bicyclus butterflies. Heredity 80, 265–272 (1998).

    Article  Google Scholar 

  3. Monteiro, A. F., Brakefield, P. M. & French, V. The evolutionary genetics and developmental basis of wing pattern variation in the butterfly Bicyclus anynana. Evolution 48, 1147–1157 (1994).

    Article  Google Scholar 

  4. Monteiro, A. F., Brakefield, P. M. & French, V. Butterfly eyespots: the genetics and development of the color rings. Evolution 51, 1207–1216 (1997).

    Article  Google Scholar 

  5. Monteiro, A. F., Brakefield, P. M. & French, V. The genetics and development of an eyespot pattern in the butterfly Bicyclus anynana: response to selection for eyespot shape. Genetics 146, 287–294 (1997).

    CAS  PubMed  Google Scholar 

  6. Carroll, S. B. et al. Pattern formation and eyespot determination in butterfly wings. Science 265, 109–114 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Carroll, S. B. Developmental regulatory mechanisms in the evolution of insect diversity. Development (Suppl.) 217–223 (1994).

  8. Brakefield, P. M. et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature 384, 236–242 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Weatherbee, S. D. et al. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr. Biol. 9, 109–115 (1999).

    Article  CAS  Google Scholar 

  11. Brunetti, C. R. et al. The generation and diversification of butterfly eyespot color patterns. Curr. Biol. 11, 1578–1585 (2001).

    Article  CAS  Google Scholar 

  12. Palopoli, M. F. & Patel, N. H. Neo-Darwinian developmental evolution: can we bridge the gap between pattern and process? Curr. Opin. Gen. Dev. 6, 502–508 (1996).

    Article  CAS  Google Scholar 

  13. Stern, D. L. Perspective: evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  Google Scholar 

  14. Mackay, T. F. C. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  Google Scholar 

  15. Brakefield, P. M. & French, V. Butterfly wings: the evolution of development of colour patterns. BioEssays 21, 391–401 (1999).

    Article  Google Scholar 

  16. Nijhout, H. F. Pattern formation on lepidopteran wings: determination of an eyespot. Dev. Biol. 80, 267–274 (1980).

    Article  CAS  Google Scholar 

  17. French, V. & Brakefield, P. M. Eyespot development on butterfly wings: the focal signal. Dev. Biol. 168, 112–123 (1995).

    Article  CAS  Google Scholar 

  18. Panganiban, G., Nagy, L. & Carroll, S. B. The role of the Distal-less gene in the development and evolution of insect limbs. Curr. Biol. 4, 671–675 (1994).

    Article  CAS  Google Scholar 

  19. Kreitman, M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412–417 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Long, A. D. et al. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139, 1273–1291 (1995).

    CAS  PubMed  Google Scholar 

  21. Taylor, B. A., Wnek, C., Schroeder, D. & Phillips, S. J. Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm. Genome 12, 95–103 (2001).

    Article  CAS  Google Scholar 

  22. Wijngaarden, P. J. & Brakefield, P. M. The genetic basis of eyespot size in the butterfly Bicyclus anynana: an analysis of line crosses. Heredity 85, 471–479 (2000).

    Article  Google Scholar 

  23. Edwards, M. D., Stuber, C. W. & Wendel, J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116, 113–125 (1987).

    CAS  PubMed  Google Scholar 

  24. Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP Linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  Google Scholar 

  25. Robinson, R. Lepidoptera Genetics (Pergamon, Oxford, 1971).

    Book  Google Scholar 

  26. Lai, C. G., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay, T. F. C. Naturally-occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266, 1697–1702 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Long, A. D., Lyman, R. F., Morgan, A. H., Langley, C. H. & Mackay, T. F. C. Both naturally occurring insertions of transposable elements and intermediary frequency polymorphisms at the achaete–scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154, 1255–1269 (2000).

    CAS  PubMed  Google Scholar 

  28. Doerge, R. W. & Churchill, G. A. Permutation test for multiple loci affecting a quantitative character. Genetics 142, 285–294 (1996).

    CAS  PubMed  Google Scholar 

  29. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Addison Wesley Longman, Harlow, Essex, 1996).

    Google Scholar 

  30. Marec, F. Synaptonemal complexes in insects. Int. J. Insect Morphol. Embryol. 25, 205–233 (1996).

    Article  Google Scholar 

Download references


We thank K. Koops for rearing the butterflies, and B. Zwaan for help with the crosses; C. Brunetti, J. Selegue and S. Carroll for the B. anynana cDNA library, the P. coenia Dll probe and the Dll antibody; N. Glansdorp for help with wing extractions, and G. Lammers for help with the confocal microscopy; K. Broman for deriving the likelihood function; F. Marec for information on butterfly chromosomes; M. Brittijn for help with the figures; and A. Monteiro, H. Teotónio and B. Zwaan for comments on the manuscript. This work was supported by the Portuguese Foundation for Science and Technology and the Luso-American Foundation under the Gulbenkian Program (P.B.), the Human Frontier Science Program Organization (P.M.B.) and the US National Institute of Health (A.D.L.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrícia Beldade.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beldade, P., Brakefield, P. & Long, A. Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature 415, 315–318 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing