Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hydrogen-based subsurface microbial community dominated by methanogens

Abstract

The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1,2,3,4,5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: Phylogenetic analysis of archaeal sequences from Lidy Hot Springs.

References

  1. Boston, P. M., Ivanov, M. V. & McKay, C. P. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95, 300–308 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. McCollom, T. M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104 (E12), 30729–30742 (1999).

    Article  ADS  Google Scholar 

  3. Carr, M. H. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 249–265 (Wiley, Chichester, 1996).

    Google Scholar 

  4. McKay, C. P. in Subsurface Microbiology and Biogeochemistry (eds Fredrickson, J. K. & Fletcher, M.) 315–327 (Wiley, New York, 2001).

    Google Scholar 

  5. Fisk, M. R. & Giovannoni, S. J. Sources of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res. 104 (E12), 11805–11815 (1999).

    Article  ADS  Google Scholar 

  6. Shock, E. L. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 40–60 (Wiley, Chichester, 1996).

    Google Scholar 

  7. Farmer, J. D. Hydrothermal systems: Doorways to early biosphere evolution. GSA Today 10 (7), 1–9 (2000).

    Google Scholar 

  8. Embree, G. F., McBroome, L. A. & Soherty, D. J. Preliminary stratigraphic framework of the Pliocene and Miocene rhyolite, Eastern Snake River Plain. Idaho Bur. Mines Geol. Bull. 26, 333–346 (1982).

    Google Scholar 

  9. Sugisaki, R. & Sugiura, T. Gas anomalies at three mineral springs and a fumarole before an inland earthquake, Central Japan. J. Geophys. Res. 91, 12296–12304 (1986).

    Article  ADS  Google Scholar 

  10. Lilley, M. D. & Olson, E. J. in Abstr. 11th Annu. V. M. Goldschmidt Conf. Abstract no. 3682, LPI contribution no. 1088 (Lunar and Planetary Institute, Houston, 2001) (CD-ROM).

    Google Scholar 

  11. Wakita, H. et al. Hydrogen release: New indicator of fault activity. Science 210, 188–190 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pierce, K. L. & Morgan, L. A. The track of the Yellowstone hot spot: Volcanism, faulting, and uplift. Geol. Soc. Am. Mem. no. 179 (1992).

  13. Knobel, L. L. et al. Chemical constituents in ground water from 39 selected sites with an evaluation of quality assurance data, Idaho National Engineering and Environmental Laboratory and vicinity, Idaho. US Geol. Surv. Op. File Rep. no. 99-246 (1999).

  14. Lovley, D. R. & Goodwin, S. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52, 2993–3003 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Orphan, V. J., Taylor, L. T., Hafenbrandl, D. & Delong, E. F. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66, 700–711 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Picard, C. et al. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 58, 2717–2722 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klappenbach, J. A. et al. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29, 181–184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amann, R. I., Ludwid, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Massana, R., Murray, A. E., Preston, C. M. & Delong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara channel. Appl. Environ. Microbiol. 63, 50–56 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moyer, C. L., Dobbs, F. C. & Karl, D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871–879 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Barns, S. M. et al. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stevens, T. O. & McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Fry, N. K. et al. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl. Environ. Microbiol. 63, 1498–1504 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson, R. T., Chapelle, F. H. & Lovley, D. R. Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281, 976–977 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chapelle, F. H., Vroblesky, D. A., Woodward, J. C. & Lovley, D. R. Practical considerations for measuring hydrogen concentrations in groundwater. Environ. Sci. Tech. 31, 2873–2877 (1997).

    Article  CAS  Google Scholar 

  26. Hobbie, J. E., Daley, R. J. & Jasper, S. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Geological Survey and a grant from the LexEn programme of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francis H. Chapelle or Derek R. Lovley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chapelle, F., O'Neill, K., Bradley, P. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002). https://doi.org/10.1038/415312a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415312a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing