Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of carbonates in dust shells around evolved stars

Abstract

Carbonates on large Solar System bodies like Earth and Mars1,2 (the latter represented by the meteorite ALH84001) form through the weathering of silicates in a watery (CO3)2- solution. The presence of carbonates in interplanetary dust particles and asteroids (again, represented by meteorites) is not completely understood, but has been attributed to aqueous alteration on a large parent body, which was subsequently shattered into smaller pieces. Despite efforts3,4,5, the presence of carbonates outside the Solar System has hitherto not been established6,7. Here we report the discovery of the carbonates calcite and dolomite in the dust shells of evolved stars, where the conditions are too primitive for the formation of large parent bodies with liquid water. These carbonates, therefore, are not formed by aqueous alteration, but perhaps through processes on the surfaces of dust or ice grains or gas phase condensation. The presence of carbonates which did not form by aqueous alteration suggests that some of the carbonates found in Solar System bodies no longer provide direct evidence that liquid water was present on large parent bodies early in the history of the Solar System8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between the spectra of NGC6302 and NGC6537.
Figure 3: Model fit to the observed spectrum of planetary nebula NGC6302.
Figure 2: Mass absorption coefficients of different carbonates.

Similar content being viewed by others

References

  1. Mittlefehldt, D. W. ALH84001, a cumulative orthopyroxenite member of the martian meteorite clan. Meteoritics 29, 214–221 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Scott, E. R. D., Krot, A. N. & Yamaguchi, A. Carbonates in fractures of Martian meteorite Allan Hills 84001: petrologic evidence for impact origin. Meteorit. Planet. Sci. 33, 709–719 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Penman, J. M. Measurements of infrared reflectivity of astronomically interesting non-silicates. Mon. Not. R. Astron. Soc. 176, 539–545 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Gillett, F. C., Forrest, W. J. & Merrill, K. M. 8–13 micron spectra of NGC7027, BD+30°3639, and NGC6572. Astrophys. J. 183, 87–93 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Sandford, S. A. & Walker, R. M. Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns. Astrophys. J. 291, 838–851 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Keane, J. V., Tielens, A. G. G. M., Boogert, A. C. A., Schutte, W. A. & Whittet, D. C. B. Ice absorption features in the 5–8 µm region toward embedded protostars. Astron. Astrophys. 376, 254–270 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, M. et al. The infrared emission bands. I. Correlation studies and the dependence on C/O ratio. Astrophys. J. 302, 737–749 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Endress, M., Zinner, E. & Bischoff, A. Early aqueous activity on primitive meteorite parent bodies. Nature 379, 701–703 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Waters, L. B. F. M. et al. Mineralogy of oxygen-rich dust shells. Astron. Astrophys. 315, L361–L364 (1996).

    ADS  CAS  Google Scholar 

  10. Jäger, C. et al. Steps toward interstellar silicate mineralogy IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998).

    ADS  Google Scholar 

  11. Molster, F. J. et al. Low-temperature crystallization of silicate dust in circumstellar disks. Nature 401, 563–565 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Kessler, M. F. et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 315, L27–L31 (1996).

    ADS  Google Scholar 

  13. Lester, D. F. & Dinerstein, H. L. An infrared disk at the center of the bipolar planetary nebula NGC 6302. Astrophys. J. 281, L67–L69 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Corradi, R. L. M. & Schwarz, H. E. The kinematics of the high velocity bipolar nebulae NGC 6537 and HB 5. Astron. Astrophys. 269, 462–468 (1993).

    ADS  Google Scholar 

  15. Gonzalez-Alfonso, E. & Cernicharo, J. The water vapor abundance in circumstellar envelopes. Astrophys. J. 525, 845–862 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Payne, H. E., Philips, J. A. & Terzian, Y. A young planetary nebula with OH molecules—NGC 6302. Astrophys. J. 326, 368–375 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Metzler, K., Bisschoff, A. & Stoeffler, D. Accretionary dust mantles in CM chondrites—Evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 2873–2897 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Pottasch, S. R. & Beintema, D. A. The ISO spectrum of the planetary nebula NGC 6302. II. Nebular abundances. Astron. Astrophys. 347, 975–982 (1999).

    ADS  CAS  Google Scholar 

  19. Rietmeijer, F. J. M. A model for diagenesis in proto-planetary bodies. Nature 313, 293–294 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Lancet, M. S. & Anders, E. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170, 980–982 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Pope, K. O., Ocampo, A. C., Fischer, A. G., Morrison, J. & Sharp, Z. Carbonate condensates in the Chicxulub ejecta deposits from Belize. Lunar Planet. Sci. 27, 1045–1046 (1996).

    ADS  Google Scholar 

  22. Molster, F. J. et al. The complete ISO spectrum of NGC6302. Astron. Astrophys. 372, 165–172 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Koike, C. et al. The spectra of crystalline silicates in infrared region. Proc. 32nd ISAS Lunar Planet. Symp. 32, 175–178 (1999).

    Google Scholar 

  24. Koike, C. et al. Absorption spectra of Mg-rich Mg-Fe and Ca pyroxenes in the mid- and far-infrared regions. Astron. Astrophys. 363, 1115–1122 (2000).

    ADS  CAS  Google Scholar 

  25. Bertie, J. E., Labbé, H. J. & Whalley, E. Absorptivity of Ice I in the range 4000-30 cm-1. J. Chem. Phys. 50, 4501–4520 (1969).

    Article  ADS  CAS  Google Scholar 

  26. Warren, S. G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206–1225 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Jäger, C., Mutschke, H., Begemann, B., Dorschner, J. & Henning, Th. Steps toward interstellar silicate mineralogy I. Laboratory results of a silicate glass of mean cosmic composition. Astron. Astrophys. 292, 641–655 (1994).

    ADS  Google Scholar 

  28. Henning, Th. & Stognienko, R. Dust opacities for protoplanetary accretion disks: influence of dust aggregates. Astron. Astrophys. 311, 291–303 (1996).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands and the UK) and with the participation of ISAS and NASA. We thank F. J. M. Rietmeijer, D. Fabian, J. Bouwman, C. Dominik, A. G. G. M. Tielens, J. Bradley, W. Schutte, J. Keane, P. Morris, L. P. Keller, H. Y. McSween Jr and R. N. Clayton for support and discussions. We acknowledge support from an NWO ‘Pionier’ grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kemper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemper, F., Jäger, C., Waters, L. et al. Detection of carbonates in dust shells around evolved stars. Nature 415, 295–297 (2002). https://doi.org/10.1038/415295a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415295a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing