Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor

Abstract

Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for both information processing and the study of fundamental solid-state physics issues. Here we report procedures that carry out the controlled transfer of spin angular momentum between electrons—confined to two dimensions and subjected to a perpendicular magnetic field—and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and ‘read out’. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron–electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ferromagnetic phase transition with easy-axis anisotropy between the spin-unpolarized and fully spin-polarized 2/3 fractional quantum Hall states.
Figure 2: Time dependence of RSD near filling factor ν = 2/3 after a field sweep.
Figure 3: Time dependence of RSD after a short excursion from filling factor ν = 0.65 to filling factor ν at fixed magnetic field.
Figure 4: Time progression of the ferromagnetic phase transition.
Figure 5: The ratio EZ/EC can be changed by tilting the sample in situ with respect to the axis of the superconducting magnet.
Figure 6: Time behaviour of RSD in the absence of current flow.
Figure 7: Current-induced displacement of the ferromagnetic phase transition.

References

  1. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    CAS  Article  Google Scholar 

  2. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    ADS  CAS  Article  Google Scholar 

  3. Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. Ekert, A. & Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    ADS  CAS  Article  Google Scholar 

  6. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  CAS  Article  Google Scholar 

  7. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by nuclear magnetic resonance spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997).

    ADS  CAS  Article  Google Scholar 

  8. Gershenfeld, N. A. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275, 350–356 (1997).

    MathSciNet  CAS  Article  Google Scholar 

  9. Kane, B. E. A silicon based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    ADS  CAS  Article  Google Scholar 

  10. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  CAS  Article  Google Scholar 

  11. Kikkawa, J. M. & Awschalom, D. D. All optical magnetic resonance in semiconductors. Science 287, 473–476 (2000).

    ADS  CAS  Article  Google Scholar 

  12. Kawakami, R. K. et al. Ferromagnetic imprinting of nuclear spins in semiconductors. Science 294, 131–134 (2001).

    ADS  CAS  Article  Google Scholar 

  13. Wald, K. W., Kouwenhoven, L. P., McEuen, P. L., van der Vaart, N. C. & Foxon, C. T. Local dynamic nuclear polarisation using quantum point contacts. Phys. Rev. Lett. 73, 1011–1014 (1994).

    ADS  CAS  Article  Google Scholar 

  14. Abragam, A. The Principles of Nuclear Magnetism 354–423 (Oxford Univ. Press, Oxford, 1961).

    Google Scholar 

  15. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    ADS  CAS  Article  Google Scholar 

  16. Eom, J. et al. Quantum Hall ferromagnetism in a two-dimensional electron system. Science 289, 2320–2323 (2000).

    ADS  CAS  Article  Google Scholar 

  17. Smet, J. H., Deutschmann, R. A., Wegscheider, W., Abstreiter, G. & von Klitzing, K. Ising ferromagnetism and domain morphology in the fractional quantum Hall regime. Phys. Rev. Lett. 86, 2412–2415 (2001).

    ADS  CAS  Article  Google Scholar 

  18. Côté, R. et al. Collective excitations, NMR, and phase transitions in skyrme crystals. Phys. Rev. Lett. 78, 4825–4828 (1997).

    ADS  Article  Google Scholar 

  19. Das Sarma, S. & Pinczuk, A. (eds) Perspectives on Quantum Hall Effects (Wiley, New York, 1996).

    Book  Google Scholar 

  20. Girvin, S. M. in Topological Aspects of Low Dimensional Systems (eds Comtet, A., Jolicoeur, T., Ouvry, S. & David, F.) 53–175 (Springer, Berlin, and EDP Sciences, Les Ulis, 1999).

    Google Scholar 

  21. Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 74, 5112–5115 (1995).

    ADS  CAS  Article  Google Scholar 

  22. Heinonen, O. (ed.) Composite Fermions (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  23. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on the quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  CAS  Article  Google Scholar 

  24. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  CAS  Article  Google Scholar 

  25. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractional charge excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    ADS  Article  Google Scholar 

  26. Jungwirth, T. & MacDonald, A. H. Pseudospin anisotropy classification of quantum Hall ferromagnets. Phys. Rev. B 63, 035305–035314 (2001).

    ADS  Article  Google Scholar 

  27. Cho, H. et al. Hysteresis and spin transitions in the fractional quantum Hall effect. Phys. Rev. Lett. 81, 2522–2525 (1998).

    ADS  CAS  Article  Google Scholar 

  28. Piazza, V. et al. First order phase transition in a quantum Hall ferromagnet. Nature 402, 638–641 (1999).

    ADS  CAS  Article  Google Scholar 

  29. De Poortere, E. P., Tutuc, E., Papadakis, S. J. & Shayegan, M. Resistance spikes at transitions between quantum Hall ferromagnets. Science 290, 1546–1549 (2000).

    ADS  CAS  Article  Google Scholar 

  30. Kronmüller, S. et al. New type of electron nuclear-spin interaction from resistively detected NMR in the fractional quantum Hall effect regime. Phys. Rev. Lett. 82, 4070–4073 (1999).

    ADS  Article  Google Scholar 

  31. Hashimoto, K., Muraki, K., Saku, T. & Hirayama, Y. Longitudinal resistance anomaly around the 2/3 filling factor observed in a GaAs/AlGaAs single heterostructure. Physica B 298, 191–194 (2001).

    ADS  CAS  Article  Google Scholar 

  32. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to the fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    ADS  CAS  Article  Google Scholar 

  33. Brey, L., Fertig, H. A., Côté, R. & MacDonald, A. H. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett. 75, 2562–2565 (1995).

    ADS  CAS  Article  Google Scholar 

  34. Tycko, R., Barrett, S. E., Dabbagh, G., Pfeiffer, L. N. & West, K. W. Electronic states in gallium arsenide quantum wells probed by optically pumped NMR. Science 268, 1460–1463 (1995).

    ADS  CAS  Article  Google Scholar 

  35. Bayot, V., Grivei, E., Melinte, S., Santos, M. B. & Shayegan, M. Giant low temperature heat capacity of GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 76, 4584–4587 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Stern and L. Brey for discussions, and M. Bichler for technological assistance. This work was supported by the German Ministry of Science and Education (BMBF) and the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Smet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smet, J., Deutschmann, R., Ertl, F. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002). https://doi.org/10.1038/415281a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415281a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing