Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The failing heart

Abstract

Cardiomyopathies are disorders affecting heart muscle that usually result in inadequate pumping of the heart. They are the most common cause of heart failure and each year kill more than 10,000 people in the United States. In recent years, there have been breakthroughs in understanding the molecular mechanisms involved in this group of conditions, with knowledge of the genetic basis for cardiomyopathies perhaps seeing the largest advance, enabling clinicians to devise improved diagnostic strategies and preparing the stage for new therapies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dilated cardiomyopathy.
Figure 2: Proteins and pathways involved in the development of cardiomyopathies.
Figure 3: Hypertrophic cardiomyopathy.
Figure 4: Left ventricular noncompaction.
Figure 5: Final common pathways of dilated cardiomyopathy and hypertrophic cardiomyopathy.

References

  1. O'Connell, J. B. & Bristow, M. R. Economic impact of heart failure in the United States: time for a different approach. J. Heart Lung Transplant 13, S107–S112 (1994).

    CAS  PubMed  Google Scholar 

  2. Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996).

    CAS  Article  PubMed  Google Scholar 

  3. Kushwaha, S. S., Fallon, J. T. & Fuster, V. Restrictive cardiomyopathy. N. Engl. J. Med. 336, 267–276 (1997).

    CAS  Article  PubMed  Google Scholar 

  4. Corrado, D. et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol. 30, 1512–1520 (1997).

    CAS  Article  PubMed  Google Scholar 

  5. Thiene, G., Nava, A., Corrado, D., Rossi, L. & Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 318, 129–133 (1988).

    CAS  Article  PubMed  Google Scholar 

  6. Furlanello, F. et al. Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia. Pacing Clin. Electrophysiol. 21, 331–335 (1998).

    CAS  Article  PubMed  Google Scholar 

  7. Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. Circulation 80, 564–572 (1989).

    CAS  Article  PubMed  Google Scholar 

  8. Abelman, W. H. & Lorrell, B. H. The challenge of cardiomyopathy. J. Am. Coll. Cardiol. 13, 1219 (1989).

    Article  Google Scholar 

  9. Towbin, J. A. in The Molecular and Clinical Genetics of Cardiac Electrophysiological Disease Ch. 13 (eds Berul, C. I. & Towbin, J. A.) 195–218 (Kluwer Academic, Norwell, MA, 2000).

    Book  Google Scholar 

  10. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93, 841–842 (1996).

  11. Gillum, R. F. Idiopathic cardiomyopathy in the United States. Am. Heart J. 111, 752–755 (1986).

    CAS  Article  PubMed  Google Scholar 

  12. Grunig, E. et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 31, 186–194 (1998).

    CAS  Article  PubMed  Google Scholar 

  13. Durand, J. B. et al. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 92, 3387–3389 (1995).

    CAS  Article  PubMed  Google Scholar 

  14. Siu, B. L. et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99, 1022–1026 (1999).

    CAS  Article  PubMed  Google Scholar 

  15. Li, D. et al. Desmin mutations responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).

    CAS  Article  PubMed  Google Scholar 

  16. Barresi, R. et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β-sarcoglycan mutations. J. Med. Genet. 37, 102–107 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Krajinovic, M. et al. Linkage of familial dilated cardiomyopathy to chromosome 9. Am. J. Hum. Genet. 57, 846–852 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowles, K. R. et al. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21–23. J. Clin. Invest. 98, 1355–1360 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kamisago, M. et al. Mutations in sarcomeric protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343, 1688–1696 (2000).

    CAS  Article  PubMed  Google Scholar 

  21. Olson, T. M., Kishimoto, N. Y., Whitby, F. G. & Michels, V. V. Mutations that alter the surface change of α-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723–732 (2001).

    CAS  Article  PubMed  Google Scholar 

  22. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Mogensen, J. et al. α-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, R39–R43 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Thierfelder, L. et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  25. Carlsson, L. & Thornell, L.-E. Desmin-related myopathies in mice and man. Acta Physiol. Scand. 171, 341–348 (2001).

    CAS  Article  PubMed  Google Scholar 

  26. Hack, A. A., Groh, M. E. & McNally, E. M. Sarcoglycans in muscular dystrophy. Microsc. Res. Tech. 48, 167–180 (2000).

    CAS  Article  PubMed  Google Scholar 

  27. Sakamoto, A. et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl Acad. Sci. USA 94, 13873–13878 (1997).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465–474 (1999).

    CAS  Article  PubMed  Google Scholar 

  29. Kass S. et al. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1–1q1. Nature Genet. 7, 546–551 (1994).

    CAS  Article  PubMed  Google Scholar 

  30. Jung, M. et al. Investigation of a family with autosomal dominant dilated cardiomyopathy defines a novel locus on chromosome 2q14–q22. Am. J. Hum. Genet. 65, 1068–1077 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Olson, T. M. & Keating, M. T. Mapping a cardiomyopathy locus to chromosome 3p22–p25. J. Clin. Invest. 97, 528–532 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Messina, D. N., Speer, M. C., Pericak-Vance, M. A. & McNally, E. M. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am. J. Hum. Genet. 61, 909–917 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutant in the α-cardiac myosin heavy chain gene. J. Clin. Invest. 103, 147–153 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101, 473–476 (2000).

    CAS  Article  PubMed  Google Scholar 

  35. Berko, B. A. & Swift, M. X-linked dilated cardiomyopathy. N. Engl. J. Med. 316, 1186–1191 (1987).

    CAS  Article  PubMed  Google Scholar 

  36. Towbin, J. A. et al. X-linked dilated cardiomyopathy (XLCM): molecular genetic evidence of linkage to the Duchenne muscular dystrophy gene at the Xp21 locus. Circulation 87, 1854–1865 (1993).

    CAS  Article  PubMed  Google Scholar 

  37. Muntoni, F. et al. Brief report: deletion of the dystrophin muscle-specific promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329, 921–925 (1993).

    CAS  Article  PubMed  Google Scholar 

  38. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    CAS  Article  PubMed  Google Scholar 

  39. Meng, H., Leddy, J. J., Frank, J., Holland, P. & Tuana, B. S. The association of cardiac dystrophin with myofibrils/z-discs regions in cardiac muscle suggests a novel role in the contractile apparatus. J. Biol. Chem. 271, 12364–12371 (1996).

    CAS  Article  PubMed  Google Scholar 

  40. Kaprielian, R. R., Stevenson, S., Rothery, S. M., Cullen, M. J. & Severs, N. J. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101, 2586–2594 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. Campbell, K. P. Three muscular dystrophies: loss of cytoskeleton–extracellular matrix linkage. Cell 80, 675–679 (1995).

    CAS  Article  PubMed  Google Scholar 

  42. Chang, W. J. et al. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl Acad. Sci. USA 93, 9142–9147 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Cox, G. F. & Kunkel, L. M. Dystrophies and heart disease. Curr. Opin. Cardiol. 12, 329–343 (1997).

    CAS  Article  PubMed  Google Scholar 

  44. Allamand, V. & Campbell, K. P. Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum. Mol. Genet. 9, 2459–2467 (2000).

    CAS  Article  PubMed  Google Scholar 

  45. Heydemann, A., Wheeler, M. T. & McNally, E. M. Cardiomyopathy in animal models of muscular dystrophy. Curr. Opin. Cardiol. 16, 211–217 (2001).

    CAS  Article  PubMed  Google Scholar 

  46. Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeny, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA 90, 3710–3714 (1993).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Towbin, J. A. The role of cytoskeletal proteins in cardiomyopathies. Curr. Opin. Cell Biol. 10, 131–139 (1998).

    CAS  Article  PubMed  Google Scholar 

  48. Bowles, N. E., Bowles, K. R. & Towbin, J. A. The “Final Common Pathway” hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy. Herz 25, 168–175 (2000).

    CAS  Article  PubMed  Google Scholar 

  49. Barth, P. G. et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 62, 327–355 (1983).

    CAS  Article  PubMed  Google Scholar 

  50. Kelley, R. I. et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J. Pediatr. 119, 738–747 (1991).

    CAS  Article  PubMed  Google Scholar 

  51. Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genet. 12, 385–389 (1996).

    CAS  Article  PubMed  Google Scholar 

  52. D'Adamo, P. et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 61, 862–867 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Bleyl, S. B. et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet. 61, 868–872 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    CAS  Article  PubMed  Google Scholar 

  55. Badorff, C. et al. Enteroviral protease 2A cleaves dystrophin's evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med. 5, 320–326 (1999).

    CAS  Article  PubMed  Google Scholar 

  56. Maron, B. J. Hypertrophic cardiomyopathy. Lancet 350, 127–133 (1997).

    CAS  Article  PubMed  Google Scholar 

  57. Jarcho, J. A. et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 321, 1372–1378 (1989).

    CAS  Article  PubMed  Google Scholar 

  58. Towbin, J. A. Molecular genetics of hypertrophic cardiomyopathy. Curr. Cardiol. Rep. 2, 134–140 (2000).

    CAS  Article  PubMed  Google Scholar 

  59. Thierfelder, L. et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc. Natl Acad. Sci. USA 90, 6270–6274 (1993).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Mann, C. J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl Acad. Sci. USA 98, 42–47 (2001).

    ADS  CAS  PubMed  Google Scholar 

  61. Ahmad, A., Brinson, M., Hodges, B. L., Chamberlain, J. S. & Amalfitano, A. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum. Mol. Genet. 9, 2507–2515 (2000).

    CAS  Article  PubMed  Google Scholar 

  62. Nowak, K. J. et al. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet. 23, 208–212 (1999).

    CAS  Article  PubMed  Google Scholar 

  63. Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103, 1256–1263 (2001).

    CAS  Article  PubMed  Google Scholar 

  64. Dalloz, F., Osinska, H. & Robbins, J. Manipulating the contractile apparatus: genetically defined animal models of cardiovascular disease. J. Mol. Cell. Cardiol. 33, 9–25 (2001).

    CAS  Article  PubMed  Google Scholar 

  65. Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α-cardiac myosin heavy chain gene. J. Clin. Invest. 103, 147–153 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Marian, A. J. et al. A transgenic rabbit model for human hypertrophic cardiomyopathy. J. Clin. Invest. 104, 1683–1692 (1999).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Kittleson, M. D. et al. Familial hypertrophic cardiomyopathy in Main Coon cats. An animal model of human disease. Circulation 99, 3172–3180 (1999).

    CAS  Article  PubMed  Google Scholar 

  68. Shou, W. et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391, 489–492 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  69. Grady, R. M. et al. Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nature Cell Biol. 1, 215–220 (1999).

    CAS  Article  PubMed  Google Scholar 

  70. Clemens, P. R. et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 3, 965–972 (1996).

    CAS  PubMed  Google Scholar 

  71. Braunwald, E. & Bristow, M. R. Congestive heart failure: fifty years of progress. Circulation 102, IV-14–IV-23 (2000).

    CAS  Article  Google Scholar 

  72. Deng, M. C. et al. Mechanical circulatory support for advanced heart failure. Effect of patient selection or outcome. Circulation 103, 231–237 (2001).

    CAS  Article  PubMed  Google Scholar 

  73. Stetson, S. J. et al. Evidence for reversible dystrophin abnormalities in patients with non-familial dilated cardiomyopathies: observations in patients treated with long-term mechanical support. Circulation 102, II–132 (2000).

    Google Scholar 

  74. Cohn, R. D. et al. Prevention of cardiomyopathy in mouse models lacking smooth muscle sarcoglycan-sarcospan complex. J. Clin. Invest. 107, R1–R7 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Towbin, J. A. & Bowles, N. E. Sarcoglycan, the heart, and skeletal muscles: new treatment, old drug? J. Clin. Invest. 107, 154–154 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Towbin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Towbin, J., Bowles, N. The failing heart. Nature 415, 227–233 (2002). https://doi.org/10.1038/415227a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415227a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing