Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface

Abstract

Activated platelets bind numerous adhesive and procoagulant proteins by receptor-mediated processes1. Although there is little evidence to suggest that these processes are heterogeneous in platelets, we previously found that platelets co-stimulated with collagen and thrombin express functional α-granule factor V only on a subpopulation of cells2. Here we show that these cells, referred to as ‘COAT-platelets’, bind additional α-granule proteins, including fibrinogen, von Willebrand factor, thrombospondin, fibronectin and α2-antiplasmin. These proteins are all transglutaminase substrates, and inhibitors of transglutaminase prevent the production of COAT-platelets. A synthetic transglutaminase substrate (CP15) also binds to COAT-platelets, and analysis by high performance liquid chromatography/mass spectrometry shows that a product is formed with a relative molecular mass (Mr) equal to CP15 plus 176. Serotonin, an abundant component of platelet-dense granules3, has an Mr of 176, and fibrinogen isolated from COAT-platelets contains covalently linked serotonin. Synthetic bovine serum albumin-(serotonin)6 binds selectively to COAT-platelets and also inhibits the retention of procoagulant proteins on COAT-platelets. These data indicate that COAT-platelets use serotonin conjugation to augment the retention of procoagulant proteins on their cell surface through an as yet unidentified serotonin receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-Granule proteins are concentrated on the surface of COAT-platelets.
Figure 2: Dansylcadaverine, acetyl-casein and anti-FXIII inhibit COAT-platelet production.
Figure 3: Serotonin conjugation to CP15 and fibrinogen.
Figure 4: Binding of biotin-BSA-(5-HT)6 to activated platelets.
Figure 5: COAT-platelets bind low levels of PAC-1.

Similar content being viewed by others

References

  1. Ware, J. A. & Coller, B. S. in Williams Hematology (eds Beutler, E., Lichtman, M. A., Coller, B. S. & Kipps, T. J.) 1161–1201 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Alberio, L., Safa, O., Clemetson, K. J., Esmon, C. T. & Dale, G. L. Surface expression and functional characterization of α-granule factor V in human platelets: Effects of ionophore A23187, thrombin, collagen and convulxin. Blood 95, 1694–1702 (2000).

    CAS  PubMed  Google Scholar 

  3. McNicol, A. & Israels, S. J. Platelet dense granules: structure, function and implications for haemostasis. Thromb. Res. 95, 1–18 (1999).

    Article  CAS  Google Scholar 

  4. Greenberg, C. S., Birckbichler, P. J. & Rice, R. H. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5, 3071–3077 (1991).

    Article  CAS  Google Scholar 

  5. Pincus, J. H. & Waelsch, H. The specificity of transglutaminase. II. Structural requirements of the amine substrate. Arch. Biochem. Biophys. 126, 44–52 (1968).

    Article  CAS  Google Scholar 

  6. Puszkin, E. G. & Raghuraman, V. Catalytic properties of a calmodulin-regulated transglutaminase from human platelet and chicken gizzard. J. Biol. Chem. 260, 16012–16020 (1985).

    CAS  PubMed  Google Scholar 

  7. Muszbek, L., Adany, R. & Mikkola, H. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function. Crit. Rev. Clin. Lab. Sci. 33, 357–421 (1996).

    Article  CAS  Google Scholar 

  8. Polgar, J. et al. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J. Biol. Chem. 272, 13576–13583 (1997).

    Article  CAS  Google Scholar 

  9. Aeschlimann, D. & Paulsson, M. Transglutaminases: Protein cross linking enzymes in tissues and body fluids. Thromb. Haemost. 71, 402–415 (1994).

    CAS  PubMed  Google Scholar 

  10. Parameswaran, K. N., Velasco, P. T., Wilson, J. & Lorand, L. Labeling of ε-lysine crosslinking sites in proteins with peptide substrates of factor XIIIa and transglutaminase. Proc. Natl Acad. Sci. USA 87, 8472–8475 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Lorand, L., Stern, A. M. & Velasco, P. T. Novel inhibitors against the transglutaminase-catalysed crosslinking of lens proteins. Exp. Eye Res. 66, 531–536 (1998).

    Article  CAS  Google Scholar 

  12. Reed, G. L. & Lukacova, D. Generation and mechanism of action of a potent inhibitor of factor XIII function. Thromb. Haemost. 74, 680–685 (1995).

    CAS  PubMed  Google Scholar 

  13. Reed, G. L., Matsuenda, G. R. & Haber, E. Platelet factor XIII increases the fibrinolytic resistance of platelet rich clots by accelerating the crosslinking of α-antiplasmin to fibrin. Thromb. Haemost. 68, 315–320 (1992).

    Article  CAS  Google Scholar 

  14. Gorman, J. J. & Folk, J. E. Structural features of glutamine substrates for transglutaminases. J. Biol. Chem. 256, 2712–2715 (1981).

    CAS  PubMed  Google Scholar 

  15. Clarke, D. D., Mycek, M. J., Neidle, A. & Waelsch, H. The incorporation of amines into protein. Arch. Biochem. Biophys. 79, 338–354 (1959).

    Article  CAS  Google Scholar 

  16. Maeda, K., Scheffler, J. J. & Tsugita, A. Tryptophan micro-scale determinations by rapid hydrolysis. Hoppe-Seyler's Z. Physiol. Chem. 365, 1183–1185 (1984).

    Article  CAS  Google Scholar 

  17. Wagner, A., Montero, D., Martensson, B., Siwers, B. & Asberg, M. Effects of fluoxetine treatment of platelet 3H-imipramine binding, 5-HT uptake and 5-HT content in major depressive disorder. J. Affect. Disord. 20, 101–113 (1990).

    Article  Google Scholar 

  18. Shattil, S. J., Cunningham, M. & Hoxie, J. A. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies. Blood 70, 307–315 (1987).

    CAS  PubMed  Google Scholar 

  19. Huang, M. M. et al. Adhesive ligand binding to integrin αIIb β3 stimulates tyrosine phosphorylation of novel protein substrates before phosphorylation of pp125FAK. J. Cell Biol. 122, 473–483 (1993).

    Article  CAS  Google Scholar 

  20. Mousa, S. A. et al. Oral antiplatelet efficacy and specificity of a novel nonpeptide platelet GPIIb/IIIa receptor antagonist, DMP 802. J. Cardiovasc. Pharmacol. 32, 169–176 (1998).

    Article  CAS  Google Scholar 

  21. Means, G. E. & Feeney, R. E. Chemical Modification of Proteins (Holden-Day, San Francisco, 1971).

    Google Scholar 

  22. Pidard, D., Montgomery, R. R., Bennett, J. S. & Kunicki, T. J. Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein Iib–IIIa complex, with intact platelets. J. Biol. Chem. 258, 12582–12586 (1983).

    CAS  Google Scholar 

  23. Laakso, J. T., Koskiniemi, M. L., Wahlroos, O. & Harkonen, M. Simultaneous determination of tryptophan and its 5-hydroxy metabolites in human cerebrospinal fluid by reversed phase liquid chromatography with electrochemical detection. Scand. J. Clin. Lab. Invest. 43, 463–472 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an NIH grant (G.L.D.), the W.K. Warren Medical Research Institute (G.L.D.), Novartis (L.A) and the Swiss National Science Foundation (K.J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Dale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, G., Friese, P., Batar, P. et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 415, 175–179 (2002). https://doi.org/10.1038/415175a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415175a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing