Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic coding of behaviourally relevant stimuli in parietal cortex

Abstract

A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal1,2, prefrontal3,4 and motor5,6,7 cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements8,9. LIP is not believed to encode non-spatial stimulus attributes such as colour10,11. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Design of experiment.
Figure 2: Three analyses of cue-location selectivity and colour selectivity for the location-relevant task.
Figure 3: Three analyses of cue-location selectivity and colour selectivity for the colour-relevant task.
Figure 4: Colour selectivity in antisaccade trials of the colour-relevant task.

References

  1. Newsome, W. T., Wurtz, R. H. & Komatsu, H. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J. Neurophysiol. 60, 604–620 (1988).

    Article  CAS  Google Scholar 

  2. Andersen, R. A., Snyder, L. H., Li, C. S. & Stricanne, B. Coordinate transformations in the representation of spatial information. Curr. Opin. Neurobiol. 3, 171–176 (1993).

    Article  CAS  Google Scholar 

  3. Murray, E. A., Bussey, T. J. & Wise, S. P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain. Res. 133, 114–129 (2000).

    Article  CAS  Google Scholar 

  4. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    Article  CAS  Google Scholar 

  5. Johnson, M. T., Coltz, J. D., Hagen, M. C. & Ebner, T. J. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons. J. Neurophysiol. 81, 875–894 (1999).

    Article  CAS  Google Scholar 

  6. Georgopoulos, A. P. Neural aspects of cognitive motor control. Curr. Opin. Neurobiol. 10, 238–241 (2000).

    Article  CAS  Google Scholar 

  7. Bichot, N. P., Schall, J. D. & Thompson, K. G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381, 697–699 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Andersen, R. A., Snyder, L. H. & Bradley, D. C. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    Article  CAS  Google Scholar 

  9. Colby, C. L. & Goldberg, M. E. space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  10. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  11. Colby, C. L. & Duhamel, J. R. Spatial representations for action in parietal cortex. Brain Res. Cogn. Brain. Res. 5, 105–115 (1996).

    Article  CAS  Google Scholar 

  12. Abramson, N. Information Theory and Coding (McGraw-Hill, New York, 1963).

    Google Scholar 

  13. Eskandar, E. N. & Assad, J. A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neurosci. 2, 88–93 (1999).

    Article  CAS  Google Scholar 

  14. Lynch, J. C., Graybiel, A. M. & Lobeck, L. J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

    Article  CAS  Google Scholar 

  15. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  Google Scholar 

  16. Thier, P. & Andersen, R. A. Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J. Neurophysiol. 80, 1713–1735 (1998).

    Article  CAS  Google Scholar 

  17. Sereno, A. B. & Maunsell, J. H. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Zhang, M. & Barash, S. neuronal switching of sensorimotor transformations for antisaccades. Nature 408, 971–975 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Mazzoni, P., Bracewell, R. M., Barash, S. & Andersen, R. A. Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J. Neurophysiol. 75, 1233–1241 (1996).

    Article  CAS  Google Scholar 

  21. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    Article  CAS  Google Scholar 

  22. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Eskandar and I. Lee for their help with all aspects of this work and C. Pack and R. Born for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Toth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toth, L., Assad, J. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002). https://doi.org/10.1038/415165a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415165a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing