Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2


Most global biogeochemical processes are known to respond to climate change, some of which have the capacity to produce feedbacks through the regulation of atmospheric greenhouse gases1. Marine denitrification—the reduction of nitrate to gaseous nitrogen—is an important process in this regard, affecting greenhouse gas concentrations directly through the incidental production of nitrous oxide, and indirectly through modification of the marine nitrogen inventory and hence the biological pump for CO2. Although denitrification has been shown to vary with glacial–interglacial cycles2,3, its response to more rapid climate change has not yet been well characterized. Here we present nitrogen isotope ratio, nitrogen content and chlorin abundance data from sediment cores with high accumulation rates on the Oman continental margin that reveal substantial millennial-scale variability in Arabian Sea denitrification and productivity during the last glacial period. The detailed correspondence of these changes with Dansgaard–Oeschger events recorded in Greenland ice cores4 indicates rapid, century-scale reorganization of the Arabian Sea ecosystem in response to climate excursions, mediated through the intensity of summer monsoonal upwelling. Considering the several-thousand-year residence time of fixed nitrogen in the ocean, the response of global marine productivity to changes in denitrification would have occurred at lower frequency and appears to be related to climatic and atmospheric CO2 oscillations observed in Antarctic ice cores between 20 and 60 kyr ago5.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location of sediment cores on the Oman margin, and (inset) the location of the Oman margin within the Arabian Sea.
Figure 2: Time series of sediment-core data along with the GISP2 δ18O record for the past 65,000 years.
Figure 3: The 3-kyr moving average of the δ15N record compared to Antarctic ice-core records of climate and atmospheric CO2 (ref. 5).


  1. Kennett, J. P., Cannariato, K. G., Hendy, I. L. & Behl, R. J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–133 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Altabet, M. A., Murray, D. W. & Prell, W. L. Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: Implications for the marine N cycle. Paleoceanography 14, 732–743 (1999).

    Article  ADS  Google Scholar 

  4. Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Indermühle, A., Monnin, E., Stauffer, B., Stocker, T. F. & Wahlen, M. Atmospheric CO2 concentration from 60 to 20 Kyr BP from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett. 27, 735–738 (2000).

    Article  ADS  Google Scholar 

  6. Howell, E. A., Doney, S. C., Fine, R. A. & Olson, D. B. Geochemical estimates of denitrification in the Arabian Sea and the Bay of Bengal during WOCE. Geophys. Res. Lett. 24, 2549–2552 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Cline, J. D. & Kaplan, I. R. Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Mar. Chem. 3, 271–299 (1975).

    Article  CAS  Google Scholar 

  8. Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A. & Naqvi, S. W. A. Isotopic composition of nitrate in the central Arabian sea and eastern tropical North Pacific: a tracer for mixing and nitrogen cycles. Limnol. Oceanogr. 43, 1680–1689 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Altabet, M. A. et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. 46, 655–679 (1999).

    Article  CAS  Google Scholar 

  10. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W. & Fontugne, M. R. Glacial-interglacial variability in denitrification in the world's oceans: Causes and consequences. Paleoceanography 15, 361–376 (2000).

    Article  ADS  Google Scholar 

  11. Anderson, D. M. Foraminifer Evidence of Monsoon Upwelling off Oman during the Later Quaternary. Thesis, Brown Univ. (1991).

    Google Scholar 

  12. Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2000).

    Article  CAS  Google Scholar 

  13. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 103 to 105-year time resolution. J. Geophys. Res. 102, 26455–26470 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000).

    Article  ADS  Google Scholar 

  15. Bond, G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Stuiver, M., Reimer, P. J. & Braziunas, T. F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 1127–1151 (1998).

    Article  CAS  Google Scholar 

  17. Warren, B. A. in Biogeochemistry of the Arabian Sea: Present Information and Gaps (ed. Lal, D.) 301–314 (Indian Academy of Sciences, Bangalore, India, 1994).

    Google Scholar 

  18. Olson, D. B., Hitchcock, G. L., Fine, R. A. & Warren, B. A. Maintenance of the low-oxygen layer in the central Arabian Sea. Deep-Sea Res. 40, 673–685 (1993).

    ADS  CAS  Google Scholar 

  19. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57 (1998).

    Article  ADS  CAS  Google Scholar 

  20. von Rad, U. et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 129–161 (1999).

    Article  Google Scholar 

  21. Suthhof, A., Ittekkot, V. & Gaye-Haake, B. Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N2O and global climate. Glob. Biogeochem. Cycles 15, 637–650 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Higginson, M. J. Chlorin Pigment Stratigraphy as a New and Rapid Palaeoceanographic Proxy in the Quaternary. Thesis, Univ. Bristol (2000).

    Google Scholar 

  23. Honjo, S., Dymond, J., Prell, W. & Ittekkot, V. Monsoon-controlled export fluxes to the interior of the Arabian Sea: U.S. JGOFS 1994-1995 experiment. Deep-Sea Res 46, 1859–1902 (1999).

    ADS  CAS  Google Scholar 

  24. Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720–725 (1991).

    Article  ADS  Google Scholar 

  25. Peterson, L. C., Haug, G. H., Hughen, K. A. & Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Upstill-Goddard, R. C., Barnes, J. & Owens, N. J. P. Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean. J. Geophys. Res. 104, 30067–30084 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197 (1982).

    Article  ADS  Google Scholar 

  29. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Krom, M. D., Brenner, S., Kress, N., Neori, A. & Gordon, L. I. Nutrient distributions during an annual cycle across a warm-core eddy from the E Mediterranean Sea. Deep-Sea Res. 40, 805–825 (1993).

    Article  CAS  Google Scholar 

Download references


We thank R. Singh and X. Huang for technical assistance. Sediment core material was obtained from the collection and curating facilities of the Lamont–Doherty Earth Observatory core collection with support from the US NSF and ONR. We thank S. Clemens, L. Labeyrie and J. Kennett for discussions. This work was supported by the US NSF ESH program and the Camille and Henry Dreyfus Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark A. Altabet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Altabet, M., Higginson, M. & Murray, D. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415, 159–162 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing