Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sudden aseismic fault slip on the south flank of Kilauea volcano

A Corrigendum to this article was published on 04 July 2002

Abstract

One of the greatest hazards associated with oceanic volcanoes is not volcanic in nature, but lies with the potential for catastrophic flank failure1,2. Such flank failure can result in devastating tsunamis and threaten not only the immediate vicinity, but coastal cities along the entire rim of an ocean basin3. Kilauea volcano on the island of Hawaii, USA, is a potential source of such flank failures3,4 and has therefore been monitored by a network of continuously recording geodetic instruments, including global positioning system (GPS) receivers, tilt meters and strain meters. Here we report that, in early November 2000, this network recorded transient southeastward displacements, which we interpret as an episode of aseismic fault slip. The duration of the event was about 36 hours, it had an equivalent moment magnitude of 5.7 and a maximum slip velocity of about 6 cm per day. Inversion of the GPS data reveals a shallow-dipping thrust fault at a depth of 4.5 km that we interpret as the down-dip extension of the Hilina Pali–Holei Pali normal fault system. This demonstrates that continuously recording geodetic networks can detect accelerating slip, potentially leading to warnings of volcanic flank collapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed (black) and predicted (orange) displacements from the November 2000 deformation event on Kilauea volcano.
Figure 2: Horizontal displacement time series of six continuous GPS stations for 2000.
Figure 3: A cross-section of Kilauea's south flank along the grey line in Fig. 1.
Figure 4: The source time function for November 2000 deformation event.

Similar content being viewed by others

References

  1. McGuire, W. J. in Volcano Instability on the Earth and Other Planets (eds McGuire, W. J., Jones, A. P. & Neuberg, J.) 1–23 (Geological Society Spec. Publ. No. 110, London, 1996).

    Google Scholar 

  2. Moore, J. G. et al. Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94, 17465–17484 (1989).

    Article  ADS  Google Scholar 

  3. Ward, S. Landslide tsunami. J. Geophys. Res. 106, 11201–11216 (2001).

    Article  ADS  Google Scholar 

  4. Lipman, P. W., Normark, W. R., Moore, J. G., Wilson, J. B. & Gutmacher, C. E. The giant submarine Alika debris slide, Mauna Loa, Hawaii. J. Geophys. Res. 94, 4279–4299 (1988).

    Article  ADS  Google Scholar 

  5. Cervelli, P., Murray, M. H., Segall, P., Aoki, Y. & Kato, T. Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J. Geophys. Res. 106, 11217–11238 (2001).

    Article  ADS  Google Scholar 

  6. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall, New York, 1993).

    Book  Google Scholar 

  7. Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L. & Bilham, R. G. A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Nakamura, K. Why do long rift zones develop in Hawaiian volcanoes—A possible role of thick oceanic sediments. Bull. Volcanol. Soc. Jpn 25, 255–267 (1980) (in Japanese).

    Google Scholar 

  10. Dieterich, J. H. Growth and persistence of Hawaiian rift zones. J. Geophys. Res. 93, 4258–4270 (1988).

    Article  ADS  Google Scholar 

  11. Thurber, C. H. & Gripp, A. E. Flexure and seismicity beneath the south flank of Kilauea Volcano and tectonic implications. J. Geophys. Res. 93, 4271–4278 (1988).

    Article  ADS  Google Scholar 

  12. Delaney, P. T., Miklius, A., Árnadóttir, T., Okamura, A. T. & Sako, M. K. Motion of Kilauea Volcano during sustained eruption from the Pu'u O'o and Kupaianaha vents, 1983–1991. J. Geophys. Res. 98, 17801–17820 (1993).

    Article  ADS  Google Scholar 

  13. Owen, S. et al. Rapid deformation of the south flank of Kilauea Volcano, Hawaii. Science 267, 1328–1332 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Owen, S. et al. Rapid deformation of Kilauea volcano: GPS measurements between 1990 and 1996. J. Geophys. Res. 105, 18983–18998 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Du, Y., Segall, P. & Gao, H. Quasi-static dislocations in three dimensional inhomogeneous media. Geophys. Res. Lett. 24, 2347–2350 (1997).

    Article  ADS  Google Scholar 

  16. Aki, K. & Richards, P. G. Quantitative Seismology; Theory and Methods (Freeman, San Francisco, 1970).

    Google Scholar 

  17. Ward, S. N. Quasi-static propagator matrices: creep on strike-slip faults. Tectonophysics 120, 83–106 (1985).

    Article  ADS  Google Scholar 

  18. Okubo, P. G., Benz, H. M. & Chouet, B. A. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology 25, 867–870 (1997).

    Article  ADS  Google Scholar 

  19. Morgan, J. K., Moore, G. F., Hills, D. J. & Leslie, S. Overthrusting and sediment accretion along Kilauea's mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data. Geology 28, 667–670 (2000).

    Article  ADS  Google Scholar 

  20. Elosegui, P., Davis, J., Johansson, J. & Shapiro, I. Detection of transient motions with the Global Positioning System. J. Geophys. Res. 101, 11249–11261 (1996).

    Article  ADS  Google Scholar 

  21. Larson, K. et al. Volcano monitoring using kinematic GPS: Filtering strategies. J. Geophys. Res. 106, 19453–19464 (2001).

    Article  ADS  Google Scholar 

  22. Stein, R. S. The role of stress transfer in earthquake occurrence. Nature 402, 605–609 (1999).

    Article  ADS  CAS  Google Scholar 

  23. David, C., Wong, T.-F., Zhu, W. & Zhang, J. Laboratory measurements of compaction-induced permeability change in porous rocks; implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425–456 (1994).

    Article  ADS  Google Scholar 

  24. Ingebritsen, S. E. & Scholl, M. A. The hydrology of Kilauea Volcano. Geothermics 22, 255–270 (1993).

    Article  CAS  Google Scholar 

  25. Swanson, D. A., Duffield, W. A. & Fiske, R. S. Displacement of the south flank of Kilauea Volcano: The result of forceful intrusion of magma into the rift zones. US Geol. Surv. Prof. Pap. 963, 1–30 (1976).

    Google Scholar 

  26. Dvorak, J. J., Klein, F. W. & Swanson, D. A. Relaxation of the south flank after the 7.2-Magnitude Kalapana earthquake, Kilauea volcano, Hawaii. Bull. Seismol. Soc. Am. 84, 133–141 (1994).

    Google Scholar 

  27. Cannon, E. C., Bürgmann, R. & Owen, S. E. Shallow normal faulting and block rotation associated with the 1975 Kalapana earthquake, Kilauea Volcano, Hawaii. Bull. Seismol. Soc. Am. (in the press).

  28. Lichten, S. & Borden, J. Strategies for high-precision Global Positioning System orbit determination. J. Geophys. Res. 92, 12751–12762 (1987).

    Article  ADS  Google Scholar 

  29. Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. GPS: Theory and Practice (Springer, New York, 1994).

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Bevis for access to the GPS data for the University of Hawaii network, P. Okubo for providing hypocentres, G. Blewitt, R. Bürgmann, J. Davis, R. Iverson, M. Johnston, J. McGuire, J. Murray, D. Swanson and W. Thatcher for comments and discussion, and D. Okita for getting us to and from Kilauea GPS stations safely and efficiently. The National Science Foundation and the US Geological Survey provided funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cervelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervelli, P., Segall, P., Johnson, K. et al. Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature 415, 1014–1018 (2002). https://doi.org/10.1038/4151014a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4151014a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing