High mixing rates in the abyssal Southern Ocean


Mixing of water masses from the deep ocean to the layers above can be estimated from considerations of continuity in the global ocean overturning circulation1,2,3. But averaged over ocean basins, diffusivity has been observed to be too small4,5,6,7,8,9,10,11,12 to account for the global upward flux of water, and high mixing intensities have only been found in the restricted areas close to sills and narrow gaps10,11,13,14,15. Here we present observations from the Scotia Sea, a deep ocean basin between the Antarctic peninsula and the tip of South America, showing a high intensity of mixing that is unprecedented over such a large area. Using a budget calculation over the whole basin, we find a diffusivity of (39 ± 10) × 104 m2 s-1, averaged over an area of 7 × 105 km2. The Scotia Sea is a basin with a rough topography16, situated just east of the Drake passage where the strong flow of the Antarctic Circumpolar Current is constricted in width. The high basin-wide mixing intensity in this area of the Southern Ocean may help resolve the question of where the abyssal water masses are mixed towards the surface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Map of the Scotia Sea, showing ALBATROSS stations (red diamonds) along the South Scotia Ridge.
Figure 2: Map of the extent of the γ n = 28.31 kg m-3 neutral density surface, shaded blue and light green.


  1. 1

    Munk, W. H. Abyssal recipes. Deep-Sea Res. 13, 207–230 (1966).

    Google Scholar 

  2. 2

    Munk, W. H. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 1997–2010 (1998).

    Article  Google Scholar 

  3. 3

    Toole, J. M. & McDougall, T. J. in Ocean Circulation and Climate (eds Siedler, G., Church, J. & Gould, J.) 337–355 (Academic, London, 2001).

    Google Scholar 

  4. 4

    Toole, J. M., Polzin, K. L. & Schmitt, R. W. Estimates of diapycnal mixing in the abyssal ocean. Science 264, 1120–1123 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Whitehead, J. A. & Worthington, L. V. The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J. Geophys. Res. 87, 7903–7924 (1982).

    ADS  Article  Google Scholar 

  6. 6

    Hogg, N. G., Biscaye, P., Gardner, W. & Schmitz, W. J. On the transport and modification of Antarctic Bottom water in the Vema Channel. J. Mar. Res. 40 (suppl.), 231–263 (1982).

    Google Scholar 

  7. 7

    Saunders, P. M. Flow through Discovery gap. J. Phys. Oceanogr. 17, 631–643 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Barton, E. D. & Hill, A. E. Abyssal flow through the Amirante Trench (Western Indian Ocean). Deep-Sea Res. A 36, 1121–1126 (1989).

    ADS  Article  Google Scholar 

  9. 9

    Durrieu de Madron, X. & Weatherly, G. Circulation, transport and bottom boundary layers of the deep currents in the Brazil Basin. J. Mar. Res. 52, 583–638 (1994).

    Article  Google Scholar 

  10. 10

    Roemmich, D., Huatala, S. & Rudnick, D. Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res. 101, 14039–14055 (1996).

    ADS  Article  Google Scholar 

  11. 11

    McCarthy, M. C., Talley, L. D. & Baringer, M. O. Deep upwelling and diffusivity in the southern Central Indian Basin. Geophys. Res. Lett. 24, 2801–2804 (1997).

    ADS  Article  Google Scholar 

  12. 12

    Morris, M. Y., Hall, M. M., St Laurent, L. C. & Hogg, N. G. Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr. 31, 3331–3348 (2001).

    ADS  Article  Google Scholar 

  13. 13

    Polzin, K. L., Speer, K. G., Toole, J. M. & Schmitt, R. W. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature 380, 54–57 (1996).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93–96 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Ledwell, J. R. et al. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179–182 (2000).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry nd ship depth soundings. Science 277, 1956–1962 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Huang, R. X. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr. 29, 727–746 (1999).

    ADS  Article  Google Scholar 

  18. 18

    Zhang, J., Schmitt, R. W. & Huang, R. X. The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr. 29, 1096–1108 (1999).

    ADS  Article  Google Scholar 

  19. 19

    Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Webb, D. J. & Suginobara, N. Vertical mixing in the ocean. Nature 409, 37 (2001).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Naveira Garabato, A. C., Heywood, K. J. & Stevens, D. P. Modification and pathways of Southern Ocean deep waters in the Scotia Sea. Deep-Sea Res. I (in the press).

  22. 22

    Jackett, D. R. & McDougall, T. J. A neutral density variable for the world's oceans. J. Phys. Oceanogr. 27, 237–263 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J. & Sanders, R. J. On the export of Antarctic Bottom Water from the Weddell Sea. Deep-Sea Res. II (2002).

  24. 24

    Arhan, M., Heywood, K. J. & King, B. A. The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res. II 46, 475–499 (1999).

    ADS  Article  Google Scholar 

  25. 25

    Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55–109 (1999).

    ADS  Article  Google Scholar 

  26. 26

    Egbert, G. D. & Ray, R. D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775–778 (2000).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Sjoberg, B. & Stigebrandt, A. Computations of the geographical distribution of the energy flux to mixing processes via internal tide and the associated vertical circulation in the ocean. Deep-Sea Res. 39, 269–291 (1992).

    ADS  Article  Google Scholar 

  28. 28

    Bell, T. H. Topographically-generated internal waves in the open ocean. J. Geophys. Res. 80, 320–327 (1975).

    ADS  Article  Google Scholar 

  29. 29

    Fukumori, I., Raghunath, R. & Fu, L.-L. Nature of global large-scale sea level variability in relation to atmospheric forcing: a modelling study. J. Geophys. Res. 103, 5493–5512 (1998).

    ADS  Article  Google Scholar 

  30. 30

    Olbers, D., Gouretski, V., Seiss, G. & Schroter, J. Hydrographic Atlas of the Southern Ocean (Alfred Wegener Inst. for Polar and Marine Res., Bremerhaven, Germany, 1992).

    Google Scholar 

Download references


We thank P. Barker and F. Vine for discussions regarding the magnitude of geothermal heating in the Scotia Sea. ALBATROSS was funded by the Natural Environment Research Council.

Author information



Corresponding author

Correspondence to Karen J. Heywood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heywood, K., Naveira Garabato, A. & Stevens, D. High mixing rates in the abyssal Southern Ocean. Nature 415, 1011–1014 (2002). https://doi.org/10.1038/4151011a

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.