Factors determining crystal–liquid coexistence under shear

Abstract

The interaction between an imposed shear flow and an order–disorder transition underlies a broad range of phenomena. Under the influence of shear flow, a variety of soft matter1,2,3,4 is observed to spontaneously form bands characterized by different local order—for example, thermotropic liquid crystals subjected to shear flow exhibit rich phase behaviour5. The stability of order under the influence of shear flow is also fundamental to understanding frictional wear6 and lubrication7,8. Although there exists a well developed theoretical approach to the influence of shear flow on continuous transitions in fluid mixtures9, little is known about the underlying principles governing non-equilibrium coexistence between phases of different symmetry. Here we show, using non-equilibrium molecular dynamics simulations of a system of spherical particles, that a stationary coexistence exists between a strained crystal and the shearing liquid, and that this coexistence cannot be accounted for by invoking a non-equilibrium analogue of the chemical potential. Instead of such thermodynamic arguments10,11, we argue that a balancing of the crystal growth rate with the rate of surface erosion by the shearing melt can account for the observed coexistence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Shear stress σ and liquid volume fraction fl versus the applied shear rate ɣ̇ at T = 0.7.
Figure 2: Shear stress σ versus temperature T.
Figure 3: The crystal structure X (filled circles) and shear velocity vx (open squares).
Figure 4

References

  1. 1

    Berret, J., Roux, D. & Porte, G. Inhomogeneous shear flows of wormlike micelles: A master dynamic phase diagram. Phys. Rev. E 55, 1668–1676 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Eiser, E., Molino, F., Porte, G. & Diat, O. Nonhomogeneous textures and banded flow in a soft cubic phase under shear. Phys. Rev. E 61, 6759–6764 (2000).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Chen, L., Chow, M., Ackerson, B. & Zukoski, C. Rheological and microstructural transitions in colloidal crystals. Langmuir 10, 2817–2829 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Fischer, E. & Callaghan, P. T. Shear banding and the isotropic-nematic transition in wormlike micelles. Phys. Rev. E 64, 011501–011516 (2001).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Tsuji, T. & Rey, A. The effect of long range order on sheared liquid crystalline materials. Phys. Rev. E 62, 8141–8151 (2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sasada, T. & Mishina, H. Freezing point depression within a shear field, with special reference to metallurgical transformations occurring during wear. Wear 74, 263–274 (1981).

    CAS  Article  Google Scholar 

  7. 7

    Thompson, P. A. & Robbins, M. O. Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bordarier, P., Schoen, M. & Fuchs, A. Stick-slip phase transitions in confined solid-like films from an equilibrium perspective. Phys. Rev. E 57, 1621–1635 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Onuki, A. Phase transitions of fluids in shear flow. J. Phys. Condens. Matter 9, 6119–6157 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ramaswamy, S. & Renn, S. Theory of shear-induced melting of colloidal crystals. Phys. Rev. Lett. 56, 945–948 (1986).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Baranyai, A. & Cummings, P. Towards a computational chemical potential for nonequilibrium steady-state systems. Phys. Rev. E 60, 5522–5527 (1999).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ackerson, B. J. & Clarke, N. A. Shear-induced partial translational ordering of a colloidal solid. Phys. Rev. A 30, 906–918 (1984).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Stevens, M. & Robbins, M. Simulations of shear-induced melting and ordering. Phys. Rev. E 48, 3778–3792 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Butler, S. & Harrowell, P. The shear induced disordering transition in colloidal crystals: Nonequilibrium Brownian dynamics simulations. J. Chem. Phys. 103, 4653–4671 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Goveas, J. & Pines, D. J. A phenomenological model of shear-thickening in wormlike micelle solutions. Europhys. Lett. 48, 706–712 (1999).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Ajdari, A. Rheological behaviour of a solution of particles aggregating on the containing walls. Phys. Rev. E 58, 6294–6298 (1998).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Olmsted, P. & Lu, C.-Y. D. Phase separation of rigid-rod suspensions in shear flow. Phys. Rev. E 60, 4397–4415 (1999).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Allen, M. & Tildesley, D. Computer Simulations of Liquids (Clarendon, Oxford, 1990).

    Google Scholar 

  19. 19

    Stevens, M. et al. Comparison of shear flow hexadecane in a confined geometry and in bulk. J. Chem. Phys. 106, 7303–7314 (1997).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an Institutional Grant from the Australian Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Harrowell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Butler, S., Harrowell, P. Factors determining crystal–liquid coexistence under shear. Nature 415, 1008–1011 (2002). https://doi.org/10.1038/4151008a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.