Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

Abstract

Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules1,2. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes3,4, transistors5,6, and random access memory cells7. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10 nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of 0.5 eV is narrowed down to 0.1 eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics8 and nano-optoelectronics9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of inserted Gd metallofullerenes (GdMFs) on the topography and band structure of a single-walled nanotube (SWNT).
Figure 2: Bandgap modulation of a GdMF-SWNT by encapsulated GdMFs.
Figure 3: Energy-resolved dI/dV images of a GdMF-SWNT.

References

  1. 1

    Aviram, A. & Ratner, M. (eds) Molecular Electronics: Science and Technology. (Annals of the New York Academy of Sciences, Vol. 852, New York, 1998).

    Google Scholar 

  2. 2

    Reed, M. A. & Tour, J. M. Computing with molecules. Sci. Am. 282(6), 86–93 (June, 2000).

    CAS  Article  Google Scholar 

  3. 3

    Yao, Z., Postma, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Zhou, C., Kong, J., Yenilmez, E. & Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555 (2000).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Tan, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    ADS  Article  Google Scholar 

  6. 6

    Postma, H. W. Ch., Tijs, T., Yao, Z., Grifoni, M. & Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Toth, G. & Lent, C. S. Quantum computing with quantum-dot cellular automata. Phys. Rev. A 63, 052315–052323 (2001).

    ADS  Article  Google Scholar 

  9. 9

    Faist, J. et al. Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl. Phys. Lett. 67, 3057–3059 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Suenaga, K., Iijima, S., Kato, H. & Shinohara, H. Fine structure analysis of Gd M45 near-edge EELS on the valence state of Gd@C82 microcrystals. Phys. Rev. B 62, 1627–1630 (2000).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Suenaga, K. et al. Element-selective single atom imaging. Science 290, 2280–2282 (2000).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hirahara, K. et al. One-dimensional metallofullerenes crystal generated inside single-walled carbon nanotube. Phys. Rev. Lett. 85, 5384–5387 (2000).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Smith, B. W., Luzzi, D. E. & Achiba, Y. Tumbling atoms and evidence for charge transfer in La2@C80@SWNT. Chem. Phys. Lett. 331, 137–142 (2000).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Okada, S., Saito, S. & Oshiyama, A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys. Rev. Lett. 86, 3835–3838 (2001).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bandow, S. et al. Smallest limit of tube diameters for encasing of particular fullerenes determined by radial breathing mode Raman scattering. Chem. Phys. Lett. 347, 23–28 (2001).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yang, L. & Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Venema, L. C. et al. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Lemay, S. G. et al. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412, 617–620 (2001).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kim, H., Lee, J., Kahng, S.-J. & Kuk, Y. Spatial modulation of conduction and valence band edges around defects. Phys. Rev. Lett. (submitted).

  23. 23

    Hornbaker, D. J., Kahng, S.-J., Misra, S. & Yazdani, A. Pseudo gaps and defect states in carbon nanotubes. Proc. 11th Int. Conf. on Scanning Tunneling Microscopy/Spectroscopy Related Techniques 104 (National Research Council, Vancouver, Canada, 2001).

Download references

Acknowledgements

We thank J.-Y. Park for his LTSTM design, Y. J. Song and H. S. Suh for experimental assistance, and J. J. Yu and S. W. Hwang for discussions. This work was supported by the Korean Ministry of Science and Technology through Creative Research Initiatives Program and the Future Program on New Carbon Nano-Materials by the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Kuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Kim, H., Kahng, S. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002). https://doi.org/10.1038/4151005a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing