Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superoxide activates mitochondrial uncoupling proteins

Abstract

Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane1,2. The functions of its homologues, UCP2 and UCP3, in other tissues are debated3,4. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic5,6. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage7,8. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of superoxide on the proton conductance of skeletal muscle mitochondria: superoxide activation of UCP3.
Figure 2: Effect of superoxide on the proton conductance of mitochondria from different tissues: superoxide activation of UCP2.
Figure 3: Effect of superoxide on the proton conductance of mitochondria from brown adipose tissue and transgenic yeast: superoxide activation of UCP1.
Figure 4: Nucleotide specificity and affinity of UCP2 (kidney) and UCP3 (skeletal muscle).

References

  1. 1

    Nicholls, D. G. & Rial, E. A history of the first uncoupling protein, UCP1. J. Bioenerg. Biomembr. 31, 399–406 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Klingenberg, M. & Echtay, K. S. Uncoupling proteins: the issues from a biochemist point of view. Biochim. Biophys. Acta 1504, 128–143 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Stuart, J. A., Cadenas, S., Jekabsons, M. B., Roussel, D. & Brand, M. D. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim. Biophys. Acta 1504, 144–158 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Ricquier, D. & Bouillaud, F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345, 161–179 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Arsenijevic, D. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genet. 26, 435–439 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Vidal-Puig, A. J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275, 16258–16266 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Papa, S. & Skulachev, V. P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell Biochem. 174, 305–319 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Brand, M. D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Echtay, K. S., Winkler, E. & Klingenberg, M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408, 609–613 (2000).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Echtay, K. S., Winkler, E., Frischmuth, K. & Klingenberg, M. Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl Acad. Sci. USA 98, 1416–1421 (2001).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Echtay, K. S. & Brand, M. D. Coenzyme Q induces GDP sensitive proton conductance in kidney mitochondria. Biochem. Soc. Trans. 29, 763–768 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Cadenas, S. et al. UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett. 462, 257–260 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Pecqueur, C. et al. Uncoupling Protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J. Biol. Chem. 276, 8705–8712 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Ruch, W., Cooper, P. H. & Baggiolini, M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J. Immunol. Methods 63, 347–357 (1983).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β-cell dysfunction and type 2 diabetes. Cell 105, 745–755 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Bathgate, B., Freebairn, E. M., Greenland, A. J. & Reid, G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol. Microbiol. 6, 363–370 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Echtay, K. S., Bienengraeber, M. & Klingenberg, M. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization of E190 largely abolishes pH control of nucleotide binding. Biochemistry 36, 8253–8260 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Stuart, J. A., Harper, J. A., Jekabsons, M. B., Brindle, K. M. & Brand, M. D. A mitochondrial uncoupling artefact can be caused by expression of uncoupling protein 1 in yeast. Biochem. J. 356, 779–789 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Cadenas, S. et al. AMP decreases the efficiency of skeletal-muscle mitochondria. Biochem. J. 351, 307–311 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 2nd edn (Clarendon, Oxford, 1989).

    Google Scholar 

  21. 21

    Pastore, D., Fratianni, A., Di Pede, S. & Passarella, S. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS Lett. 470, 88–92 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Kowaltowski, A. J., Costa, A. D & Vercesi, A. E. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett. 425, 213–216 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Jezek, P., Orosz, D. E., Modriansky, M. & Garlid, K. D. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids. A new look at old hypotheses. J. Biol. Chem. 269, 26184–26190 (1994).

    CAS  PubMed  Google Scholar 

  24. 24

    Liu, S. S. Generating, partioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17, 259–272 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Laloi, M. et al. A plant cold-induced uncoupling protein. Nature 389, 135–136 (1997).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Scandalios, J. G. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Negre-Salvayre, A. et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809–15 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Brand, M. D. in Bioenergetics—a Practical Approach (eds Brown, G. C. & Cooper, C. E.) 39–62 (IRL, Oxford, 1995).

    Google Scholar 

  29. 29

    Rolfe, D. F. S., Hulbert, A. J. & Brand, M. D. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim. Biophys. Acta 1188, 405–16 (1994).

    Article  Google Scholar 

  30. 30

    Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Abuin for help in constructing the UCP3 knockout mice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brand.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Echtay, K., Roussel, D., St-Pierre, J. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002). https://doi.org/10.1038/415096a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing