Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polyandrous females avoid costs of inbreeding


Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection1,2, speciation3 and conflicts of interest between the sexes4, and yet they are poorly understood. Matings inevitably have costs5, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males6,7. It has been shown that mating with more than one male can increase offspring viability8,9,10,11,12, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility13. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative hatching success.


  1. Andersson, M. Sexual Selection (Princeton Univ. Press, Princeton, New Jersey, 1994).

    Google Scholar 

  2. Eberhard, W. G. Female Control: Sexual Selection by Cryptic Female Choice (Princeton Univ. Press, Princeton, New Jersey, 1996).

    Google Scholar 

  3. Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. Sexual conflict promotes speciation in insects. Proc. Natl Acad. Sci. USA 97, 10460–10464 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, A. N.) 123–166 (Academic, London, 1979).

    Google Scholar 

  5. Daly, M. The cost of mating. Am. Nat. 112, 771–774 (1978).

    Article  Google Scholar 

  6. Zeh, J. A. & Zeh, D. W. The evolution of polyandry 1: Intragenomic conflict and genetic incompatibility. Proc. R. Soc. Lond. B 263, 1711–1717 (1996).

    Article  ADS  Google Scholar 

  7. Zeh, J. A. & Zeh, D. W. The evolution of polyandry 2: Post-copulatory defences against genetic incompatibility. Proc. R. Soc. Lond. B 264, 69–75 (1997).

    Article  ADS  Google Scholar 

  8. Madsen, T., Shine, R., Loman, J. & Håkansson, T. Why do female adders copulate so frequently? Nature 355, 440–441 (1992).

    Article  ADS  Google Scholar 

  9. Olsson, M., Gullberg, A., Tegelström, H., Madsen, T. & Shine, R. Can female adders multiply? Nature 369, 528 (1994).

    Article  ADS  Google Scholar 

  10. Tregenza, T. & Wedell, N. Benefits of multiple mates in the cricket Gryllus bimaculatus. Evolution 52, 1726–1730 (1998).

    Article  Google Scholar 

  11. Newcomer, S. D., Zeh, J. A. & Zeh, D. W. Genetic benefits enhance the reproductive success of polyandrous females. Proc. Natl Acad. Sci. USA 96, 10236–10241 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Keil, A. & Sachser, N. Reproductive benefits from female promiscuous mating in a small mammal. Ethology 104, 897–903 (1998).

    Article  Google Scholar 

  13. Tregenza, T. & Wedell, N. Genetic compatibility, mate choice and patterns of parentage. Mol. Ecol. 9, 1013–1027 (2000).

    Article  CAS  Google Scholar 

  14. Simmons, L. W. Female choice in the field cricket Gryllus bimaculatus (de Geer). Anim. Behav. 34, 1463–1470 (1986).

    Article  Google Scholar 

  15. Thornhill, N. W. Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (Univ. Chicago Press, Chicago, 1993).

    Google Scholar 

  16. Simmons, L. W. Sperm competition as a mechanism of female choice in the field cricket, Gryllus bimaculatus. Behav. Ecol. Sociobiol. 21, 197–202 (1987).

    Article  Google Scholar 

  17. Qayyum, H. A. & Wahla, M. M. Biology of Gryllus bimaculatus Degeer. Pak. J. Sci. Res. 21, 112–116 (1969).

    Google Scholar 

  18. Markow, T. A. in Ecological Genetics and Evolution: The Cactus–Yeast–Drosophial Model System (eds Barker, J. S. F. & Starmer, W. T.) 273–287 (Academic, New York, 1982).

    Google Scholar 

  19. Markow, T. A. Assortative fertilization in Drosophila. Proc. Natl Acad. Sci. USA 94, 7756–7760 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Lorenz, M. W., Lorenz, J. I., Treiblmayr, K. & Hoffmann, K. H. In vivo effects of allatostatins in crickets, Gryllus bimaculatus (Ensifera:Gryllidae). Archives Insect Biochem. Physiol. 38, 32–43 (1998).

    Article  CAS  Google Scholar 

  21. Simmons, L. W. Female choice contributes to offspring fitness in the field cricket Gryllus bimaculatus (de Geer). Behav. Ecol. Sociobiol. 21, 313–321 (1987).

    Article  Google Scholar 

  22. Simmons, L. W. Pheromonal cues for the recognition of kin by female field crickets, Gryllus bimaculatus. Anim. Behav. 40, 192–195 (1990).

    Article  Google Scholar 

  23. Simmons, L. W. Kin recognition and its influence on mating preferences of the field cricket, Gryllus bimaculatus (de Geer). Anim. Behav. 38, 68–77 (1989).

    Article  Google Scholar 

  24. Stockley, P. Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition? Proc. R. Soc. Lond. B 266, 1663–1669 (1999).

    Article  Google Scholar 

  25. Howard, D. J. Conspecific sperm and pollen precedence and speciation. Annu. Rev. Ecol. Syst. 30, 109–132 (1999).

    Article  Google Scholar 

  26. Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. Cambridge Phil. Soc. 75, 21–64 (2000).

    Article  CAS  Google Scholar 

  27. Simmons, L. W. The evolution of polyandry: an examination of the genetic incompatibility and good-sperm hypotheses. J. Evol. Biol. 14, 585–594 (2001).

    Article  Google Scholar 

  28. Olsson, M., Shine, R., Madsen, T., Gullberg, A. & Tegelström, H. Sperm selection by females. Nature 383, 585 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Olsson, M., Gullberg, A. & Tegelström, H. Malformed offspring, sibling matings, and selection against inbreeding in the sand lizard (Lacerta agilis). J. Evol. Biol. 9, 229–242 (1996).

    Article  Google Scholar 

  30. Tregenza, T. & Wedell, N. Definitive evidence for cuticular pheromones in a cricket. Anim. Behav. 54, 979–984 (1997).

    Article  CAS  Google Scholar 

Download references


We thank B. Riddoch for collecting the original field population. A. Bretman and F. A. Attia for help with experiments, J. Kotiaho for suggestions on experimental design and G. Arnqvist, R. K. Butlin, D. Hosken, L. Rowe, R. Wilson and D. Zeh for comments on the manuscript. This work was supported by a NERC fellowhip to T.T. and a Royal Society fellowship to N.W.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tom Tregenza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tregenza, T., Wedell, N. Polyandrous females avoid costs of inbreeding. Nature 415, 71–73 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing