Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diabetes mellitus and genetically programmed defects in β-cell function

Abstract

The pathways that control insulin secretion and regulate pancreatic β-cell mass are crucial in the development of diabetes mellitus. Maturity-onset diabetes of the young comprises a number of single-gene disorders affecting pancreatic β-cell function, and the consequences of mutations in these genes are so serious that diabetes develops in childhood or adolescence. A genetic basis for the more common form of type 2 diabetes, which affects 10–20% of adults in many developed countries, is less clear cut. It is also characterized by abnormal β-cell function, but other tissues are involved as well. However, in both forms identification of causative and susceptibility genes are providing new insight into the control of insulin action and secretion, as well as suggesting new treatments for diabetes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Model of a pancreatic β-cell showing proteins associated with MODY and other forms of β-cell dysfunction.

References

  1. American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 24 (Suppl. 1), S5–S20 (2001).

  2. Atkinson, M. A. & Eisenbarth, G. S. Type 1 diabetes: new perspective on disease pathogenesis and treatment. Lancet 358, 221–229 (2001).

    CAS  Article  Google Scholar 

  3. Cavaghan, M. K., Ehrmann, D. A. & Polonsky, K. S. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest. 106, 329–333 (2000).

    CAS  Article  Google Scholar 

  4. Kahn, S. E. The importance of β-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab. 86, 4047–4058 (2001).

    CAS  PubMed  Google Scholar 

  5. Fajans, S. S., Bell, G. I. & Polonsky, K. S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980 (2001).

    CAS  Article  Google Scholar 

  6. Owen, K. & Hattersley, A. T. Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract. Res. Clin. Endo. Metab. 15, 309–323 (2001).

    CAS  Article  Google Scholar 

  7. Taylor, S. I. & Arioglu, E. Genetically defined forms of diabetes in children. J. Clin. Endocrinol. Metab. 84, 4390–4396 (1999).

    CAS  Article  Google Scholar 

  8. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    ADS  CAS  Article  Google Scholar 

  9. Polonsky, K. S. & O'Meara, N. M. in Endocrinology 4th edn (eds DeGroot, L. J. & Jameson, L. J.) 697–711 (Saunders, Philadelphia, 2001).

    Google Scholar 

  10. Newgard, C. G. & Matschinsky, F. M. in The Endocrine Pancreas and Regulation of Metabolism (eds Jefferson, L. S. & Cherrington, A. D.) 125–151 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  11. Njølstad, P. R. et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med. 344, 1588–1592 (2001).

    Article  Google Scholar 

  12. Cereghini, S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 10, 267–282 (1996).

    CAS  Article  Google Scholar 

  13. Ryffel, G. U. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF) 1 and HNF 4 families: functional and pathological consequences. J. Mol. Endocrinol. 27, 11–29 (2001).

    CAS  Article  Google Scholar 

  14. Emens, L. A., Landers, D. W. & Moss, L. G. Hepatocyte nuclear factor 1α is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc. Natl Acad. Sci. USA 89, 7300–7304 (1992).

    ADS  CAS  Article  Google Scholar 

  15. Okita, K. et al. Human insulin gene is a target gene of hepatocyte nuclear factor-1α (HNF-1α) and HNF-1β. Biochem. Biophys. Res. Commun. 263, 566–569 (1999).

    CAS  Article  Google Scholar 

  16. Wang, H., Antizozzi, P. A., Hagenfeldt, K. A., Maechler, P. & Wollheim, C. B. Molecular targets of a HNF1α mutation responsible for pancreatic β-cell dysfunction. EMBO J. 19, 4257–4264 (2000).

    CAS  Article  Google Scholar 

  17. Wang, H., Maechler, P., Antinozzi, P. A., Hagenfeldt, K. A. & Wollheim, C. B. Hepatocyte nuclear factor 4α regulates the expression of pancreatic β-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J. Biol. Chem. 275, 35953–35959 (2000).

    CAS  Article  Google Scholar 

  18. Shih, D. Q. et al. Loss of HNF-1α function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 50, 2472–2480 (2001).

    CAS  Article  Google Scholar 

  19. Herman, W. H. et al. Diminished insulin and glucagon secretory responses to arginine in nondiabetic subjects with a mutation in the hepatocyte nuclear factor-4α/MODY1 gene. Diabetes 46, 1749–1754 (1997).

    CAS  Article  Google Scholar 

  20. Pontoglio, M. et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest. 101, 2215–2222 (1998).

    CAS  Article  Google Scholar 

  21. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    ADS  CAS  Article  Google Scholar 

  22. Edlund, H. Transcribing diabetes. Diabetes 47, 1817–1823 (1998).

    CAS  Article  Google Scholar 

  23. Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L. & Habener, J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nature Genet. 15, 106–110 (1997).

    CAS  Article  Google Scholar 

  24. Marshak, S., Totary, H., Cerasi, E. & Melloul, D. Purification of the β-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc. Natl Acad. Sci. USA 93, 15057–15062 (1996).

    ADS  CAS  Article  Google Scholar 

  25. Stoffers, D. A., Ferrer, J., Clarke, W. L. & Habener, J. F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genet. 17, 138–139 (1997).

    CAS  Article  Google Scholar 

  26. Macfarlane, W. M. et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J. Clin. Invest. 104, R33–R39 (1999).

    CAS  Article  Google Scholar 

  27. Hani, E. H. et al. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J. Clin. Invest. 104, R41–R48 (1999).

    CAS  Article  Google Scholar 

  28. Clocquet, A. R. et al. Impaired insulin secretion and increased insulin sensitivity in familial maturity-onset diabetes of the young 4 (insulin promoter factor 1 gene). Diabetes 49, 1856–1864 (2000).

    CAS  Article  Google Scholar 

  29. Chu, K., Nemoz-Gaillard, E. & Tsai, M. J. BETA2 and pancreatic islet development. Recent Prog. Horm. Res. 56, 23–46 (2001).

    CAS  Article  Google Scholar 

  30. Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genet. 23, 323–328 (1999).

    CAS  Article  Google Scholar 

  31. Shimomura, H. et al. Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with a strong family history. Diabetes 49, 1597–1600 (2000).

    CAS  Article  Google Scholar 

  32. Maassen, J. A. & Kadowaki, T. Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia 39, 375–382 (1996).

    CAS  Article  Google Scholar 

  33. Velho, G. et al. Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu(UUR) gene mutation. Diabetes 45, 478–487 (1996).

    CAS  Article  Google Scholar 

  34. Silva, J. P. et al. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genet. 26, 336–340 (2000).

    CAS  Article  Google Scholar 

  35. National Institutes of Health. Diabetes in America 2nd edn. NIH Publication No. 95–1468 (1995).

  36. Ludwig, D. S. & Ebbeling, C. B. Type 2 diabetes mellitus in children. J. Am. Med. Assoc. 268, 1427–1430 (2001).

    Article  Google Scholar 

  37. Pick, A. et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes 47, 358–364 (1998).

    CAS  Article  Google Scholar 

  38. Milburn, J. L. Jr et al. Pancreatic β-cells in obesity. Evidence for induction of functional, morphological, and metabolic abnormalities by increased long chain fatty acids. J. Biol. Chem. 270, 1295–1299 (1995).

    CAS  Article  Google Scholar 

  39. Cockburn, B. N. et al. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity and the onset of diabetes. Diabetes 46, 1434–1439 (1997).

    CAS  Article  Google Scholar 

  40. García-Ocaña, A. et al. Using β-cell growth factors to enhance human pancreatic islet transplantation. J. Clin. Endocrinol. Metab. 86, 984–988 (2001).

    PubMed  Google Scholar 

  41. Flier, S. N., Kulkarni, R. N. & Kahn, C. R. Evidence for a circulating islet growth factor in insulin-resistant states. Proc. Natl Acad. Sci. USA 98, 7475–7480 (2001).

    ADS  CAS  Article  Google Scholar 

  42. Tuttle, R. L. et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt/PKBα. Nature Med. 7, 1133–1137 (2001).

    CAS  Article  Google Scholar 

  43. Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell 105, 745–755 (2001).

    CAS  Article  Google Scholar 

  44. Carpentier, A., Mittelman, S. D., Bergman, R. N., Giacca, A. & Lewis, G. F. Prolonged elevation of plasma free fatty acids impairs pancreatic β-cell function in obese nondiabetic human but not in individuals with type 2 diabetes. Diabetes 49, 399–408 (2000).

    CAS  Article  Google Scholar 

  45. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet. 26, 76–80 (2000).

    CAS  Article  Google Scholar 

  46. Luan, J. et al. Evidence for gene-nutrient interaction at the PPARγ locus. Diabetes 50, 686–689 (2001).

    CAS  Article  Google Scholar 

  47. Stefan, N., Fritsche, A., Häring, H. & Stumvoll, M. Effect of experimental elevation of free fatty acids on insulin secretion and insulin sensitivity in healthy carriers of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene. Diabetes 50, 1143–1148 (2001).

    CAS  Article  Google Scholar 

  48. Olefsky, J. M. Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists. J. Clin. Invest. 106, 467–472 (2000).

    CAS  Article  Google Scholar 

  49. Cavaghan, M. K., Ehrmann, D. A., Byrne, M. M. & Polonsky, K. S. Treatment with the oral antidiabetic agent troglitazone improves β cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest. 100, 530–537 (1997).

    CAS  Article  Google Scholar 

  50. Dubois, M. et al. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in normal human pancreatic islets. Diabetologia 43, 1165–1169 (2000).

    CAS  Article  Google Scholar 

  51. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    CAS  Article  Google Scholar 

  52. Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of the insulin and glucokinase genes in pancreatic β cells. Molecular Cell 7, 559–570 (2001).

    CAS  Article  Google Scholar 

  53. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet. 26, 163–175 (2000).

    CAS  Article  Google Scholar 

  54. Baier, L. J. et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J. Clin. Invest. 106, R69–R73 (2000).

    CAS  Article  Google Scholar 

  55. Sreenan, S. K. et al. Calpains play a role in insulin secretion and action. Diabetes 50, 2013–2020 (2001).

    CAS  Article  Google Scholar 

  56. Wiltshire, S. et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am. J. Hum. Genet. 69, 553–569 (2001).

    CAS  Article  Google Scholar 

  57. National Center for Biotechnology Information. 〈http://www.ncbi.nlm.nih.gov/〉 (2001).

  58. Moore, A., Bonner-Weir, S. & Weissleder, R. Noninvasive in vivo measurement of β-cell mass in mouse model of diabetes. Diabetes 50, 2231–2236 (2001).

    CAS  Article  Google Scholar 

  59. Seino, S., Iwanaga, T., Nagashima, K. & Miki, T. Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 49, 311–318 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for their contributions to the studies presented here. This work was supported by grants from the NIH and a gift from the Blum-Kovler Foundation. G.I.B. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bell, G., Polonsky, K. Diabetes mellitus and genetically programmed defects in β-cell function. Nature 414, 788–791 (2001). https://doi.org/10.1038/414788a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414788a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing