Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein

Abstract

Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila1,2. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway3,4. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections4,5. Genetic screens have identified a range of genes involved in these intracellular signalling cascades6,7,8,9,10,11,12, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle13, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors14 and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of antimicrobial peptides in different mutant backgrounds after infection by fungi, Gram-positive or Gram-negative bacteria.
Figure 2: seml mutant flies are highly susceptible to Gram-positive infection.
Figure 3: seml is genetically upstream of Toll and nec, and codes for a circulating protein.
Figure 4: seml is a mutant for the Drosophila PGRP-SA gene.

Similar content being viewed by others

References

  1. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Khush, R. S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol. 22, 260–264 (2001).

    Article  CAS  Google Scholar 

  3. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  Google Scholar 

  6. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  Google Scholar 

  7. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    Article  CAS  Google Scholar 

  8. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    Article  CAS  Google Scholar 

  9. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    Article  CAS  Google Scholar 

  10. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  Google Scholar 

  11. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    Article  CAS  Google Scholar 

  12. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999).

    Article  CAS  Google Scholar 

  13. Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  Google Scholar 

  14. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  15. Celine, L. F. Semmelweis. L’imaginaire (Gallimard, Paris, 1999).

    Google Scholar 

  16. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 (1996).

    Article  CAS  Google Scholar 

  17. Kang, D., Liu, G., Lundström, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Liu, C., Gelius, E., Liu, G., Steiner, H. & Dziarski, R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J. Biol. Chem. 275, 24490–24499 (2000).

    Article  CAS  Google Scholar 

  20. Janeway, C. A. Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  Google Scholar 

  21. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  24. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Franc, N. C. & White, K. Innate recognition systems in insect immunity and development: new approaches in Drosophila. Microbes Infect. 2, 243–250 (2000).

    Article  CAS  Google Scholar 

  30. Turner, M. W. & Hamwas, R. M. Mannose-binding lectin: structure, function, genetics and diseases associations. Rev. Immunogenet. 2, 305–322 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for comments on the manuscript, M. E. Moritz and M. Schneider for providing bacterial and fungal cultures, and C. Chevalier for sequencing. This work was supported by CNRS, the Ministère de l’Education Nationale de la Recherche et de la Technologie, and the Fondation pour la Recherche Médicale (Implantation jeunes équipes to J.R.). Financial support from Entomed, Exelixis and the National Institutes of Health is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Royet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, T., Reichhart, JM., Hoffmann, J. et al. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001). https://doi.org/10.1038/414756a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414756a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing