Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi

Abstract

Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history1,2. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years3,4. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome2. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual5,6. Here we use DNA–DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques4 used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclei of Scutellospora castanea taken with scanning laser confocal microscopy after single-target and double-target DNA–DNA FISH.
Figure 2: Within- and among-spore polymorphism.
Figure 3: Frequency distributions for the index of association for a population of 30 hypothetical spores of an arbuscular mycorrhizal fungus.

Similar content being viewed by others

References

  1. Maynard Smith, J. Contemplating life without sex. Nature 324, 300–301 (1986).

    Article  ADS  Google Scholar 

  2. Welch, D. M. & Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Judson, O. P. & Normark, B. B. Ancient asexual scandals. Trends Ecol. Evol. 11, 41–46 (1996).

    Article  CAS  Google Scholar 

  4. Rosendahl, S. & Taylor, J. W. Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol. Ecol. 6, 821–829 (1997).

    Article  CAS  Google Scholar 

  5. Sanders, I. R., Clapp, J. P. & Wiemken, A. The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems: A key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133, 123–134 (1996).

    Article  Google Scholar 

  6. Sanders, I. R. No sex, we're fungi. Nature 399, 737–739 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Smith, S. E. & Read, D. J. The Mycorrhizal Symbiosis (Academic, Oxford, 1997).

    Google Scholar 

  8. Van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Sanders, I. R. et al. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies of genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 130, 419–427 (1995).

    Article  CAS  Google Scholar 

  10. Lloyd-MacGilp, S. A. et al. Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytol. 133, 103–111 (1996).

    Article  CAS  Google Scholar 

  11. Redecker, D., Thierfelder, H., Walker, C. & Werner, D. Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identification in different genera in the order glomales. Appl. Environ. Microbiol. 63, 1756–1761 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lanfranco, L., Delpero, M. & Bonfante, P. Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Mol. Ecol. 8, 37–45 (1999).

    Article  CAS  Google Scholar 

  13. Hoelzel, A. R. & Dover, G. A. Molecular Genetic Ecology 1–20 (IRL, Oxford, 1991).

    Google Scholar 

  14. Hijri, M., Hosny, M., van Tuinen, D. & Dulieu, H. Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet. Biol. 26, 141–151 (1999).

    Article  CAS  Google Scholar 

  15. Redecker, D., Hijri, M., Dulieu, H. & Sanders, I. R. Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of Internal Transcribed Spacers reported from Scutellospora castanea are of Ascomycete origin. Fungal Genet. Biol. 28, 238–244 (1999).

    Article  CAS  Google Scholar 

  16. Maynard Smith, J. et al. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).

    Article  ADS  Google Scholar 

  17. Mes, T. H. M. Character compatibility of molecular markers to distinguish asexual and sexual reproduction. Mol. Ecol. 7, 1719–1727 (1998).

    Article  Google Scholar 

  18. Clapp, J. P., Rodriguez, A. & Dodd, J. C. Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol. 149, 539–554 (2001).

    Article  CAS  Google Scholar 

  19. van Gemeren, I. A. et al. The ER chaperone encoding bipA gene of black Aspergilli is induced by heat shock and unfolded proteins. Gene 198, 43–52 (1997).

    Article  CAS  Google Scholar 

  20. Moran, N. A. & Wenegreen, J. J. Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends Ecol. Evol. 15, 321–326 (2000).

    Article  CAS  Google Scholar 

  21. Giovannetti, M., Azzolini, D. & Citernesi, A. S. Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 65, 5571–5575 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giovannetti, M. et al. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol. 151, 717–724 (2001).

    Article  Google Scholar 

  23. White, T. J., Bruns, T., Lee, S. & Taylor, J. in PCR Protocols: A Guide to Methods and Applications (eds Innes, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic, New York, 1990).

    Google Scholar 

  24. Antoniolli, Z. I., Schachtman, D. P., Ophel-Keller, K. & Smith, S. E. Variation in rDNA ITS sequences in Glomus mosseae and Gigaspora margarita spores from permanent pasture. Myc. Res. 104, 708–715 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Boller and A. Wiemken for allowing part of this work to be conducted in the Botanical Institute Basle, T. Mes and M. Wilkinson for advice on the analysis, A. Rodriguez and J. P. Clapp for providing 28S sequences, E. Stöckli and H. Reichert for use of the confocal microscope, P. Heslop-Harrison for advice on in situ controls and J. P. Clapp, M. G. A. van der Heijden, L. Keller, A. M. Koch and F. Mery for critically reading the manuscript. We thank the Swiss National Science Foundation for supporting this work with a standard research grant and a fellowship awarded to I.R.S. under the professorial fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Sanders.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, G., Hijri, M. & Sanders, I. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414, 745–748 (2001). https://doi.org/10.1038/414745a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414745a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing