Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Light emission

A temperature-tunable random laser

Abstract

Random lasers have fascinating emission properties that lie somewhere between those of a conventional laser and a common light-bulb. We have created a random laser that can be brought above and below its threshold for laser emission by small changes in its temperature, thereby creating a light source with a temperature-tunable colour spectrum. As a single random laser can be made as small as a grain of tens of micrometres in diameter, we expect our device to find application in photonics, temperature-sensitive displays and screens, and in remote temperature sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A temperature-tunable random laser.
Figure 2: Action of a temperature-tunable random laser.

Similar content being viewed by others

References

  1. Letokhov, V. S. Zh. Eksp. Teor. Fiz. 53, 1442–1452 (1967) [Sov. Phys. J. Exp. Theoret. Phys. 26, 835–840 (1968)].

    CAS  Google Scholar 

  2. Gouedard, C., Husson, D., Sauteret, C., Auzel, F. & Migus, A. J. Opt. Soc. Am. B 10, 2358–2363 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvin, E. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  4. Wiersma, D. S. & Lagendijk, A. Phys. Rev. E 54, 4256–4265 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Sheng, P. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, San Diego, 1995).

  6. Zyuzin, A. Phys. Rev. E 51, 5274–5278 (1995).

    Article  ADS  CAS  Google Scholar 

  7. John, S. & Pang, G. Phys. Rev. A 54, 3642–3652 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Berger, G. A., Kempe, M. & Genack, A. Z. Phys. Rev. E 56, 6118–6122 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Beenakker, C. W. J. Phys. Rev. Lett. 81, 1829–1832 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Cao, H. et al. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Xunya, J. & Soukoulis, C. M. Phys. Rev. Lett. 85, 70–73 (2000).

    Article  ADS  Google Scholar 

  12. Wiersma, D. S., Colocci, M., Righini, R. & Aliev, F. Phys. Rev. B 64, 144208-1–144208-6 (2001).

    Article  ADS  Google Scholar 

  13. Drzaic, P. S. Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik S. Wiersma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiersma, D., Cavalieri, S. A temperature-tunable random laser. Nature 414, 708–709 (2001). https://doi.org/10.1038/414708a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414708a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing