Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae

This article has been updated

Abstract

Broken DNA ends are rejoined by non-homologous end-joining (NHEJ) pathways requiring the Ku proteins (Ku70, Ku80), DNA ligase IV and its associated protein Lif1/Xrcc4 (ref. 1). In mammalian meiotic cells, Ku protein levels are much lower than in somatic cells, apparently reducing the capacity of meiotic cells to carry out NHEJ and thereby promoting homologous recombination2. In Saccharomyces cerevisiae, NHEJ is also downregulated in meiosis-competent MATa/MATα diploid cells in comparison with diploids or haploids expressing only MATa or MATα3,4. Diploids expressing both MATa and MATα show enhanced mitotic homologous recombination4. Here we report that mating-type-dependent regulation of NHEJ in budding yeast is caused in part by transcriptional repression of both LIF1 and the gene NEJ1 (YLR265C)—identified from microarray screening of messenger RNAs. Deleting NEJ1 reduces NHEJ 100-fold in MATa or MATα haploids. Constitutive expression of NEJ1, but not expression of LIF1, restores NHEJ in MATa/MATα cells. Nej1 regulates the subcellular distribution of Lif1. A green fluorescent protein (GFP)–Lif1 fusion protein accumulates in the nucleus in cells expressing NEJ1 but is largely cytoplasmic when NEJ1 is repressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-type regulation of LIF1 and NEJ1 mRNA.
Figure 2: Effect of LIF1 and NEJ1 on NHEJ ligation of linearized plasmid DNA transformed into yeast.
Figure 3: Role of NEJ1 in chromosomal and plasmid NHEJ.
Figure 4: Localization of EGFP–Lif1 in haploid MATα and diploid MAT a/MATα cells.

Similar content being viewed by others

Change history

  • 14 February 2013

    The equal contributions were incorrectly formatted in the HTML and have been amended to match the PDF on 14 February 2013.

References

  1. Jeggo, P. A. DNA breakage and repair. Adv. Genet. 38, 185–218 (1998).

    Article  CAS  Google Scholar 

  2. Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nature Genet. 23, 194–198 (1999).

    Article  CAS  Google Scholar 

  3. Åström, S. U., Okamura, S. M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature 397, 310 (1999).

    Article  ADS  Google Scholar 

  4. Lee, S. E., Pâques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in channeling double-strand breaks to homologous and nonhomologous recombination pathways. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  Google Scholar 

  5. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  6. Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).

    Article  CAS  Google Scholar 

  7. Wilson, T. E., Grawunder, U. & Lieber, M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Tsukamoto, Y., Kato, J. & Ikeda, H. Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not in homologous recombination. Nucleic Acids Res. 24, 2067–2072 (1996).

    Article  CAS  Google Scholar 

  9. Milne, G. T., Jin, S., Shannon, K. B. & Weaver, D. T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4189–4198 (1996).

    Article  CAS  Google Scholar 

  10. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4348 (1996).

    Article  CAS  Google Scholar 

  11. Schär, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 11, 1912–1924 (1997).

    Article  Google Scholar 

  12. Teo, S. H. & Jackson, S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16, 4788–4795 (1997).

    Article  CAS  Google Scholar 

  13. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  Google Scholar 

  14. Tsukamoto, Y., Kato, J. & Ikeda, H. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142, 383–391 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900–903 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article  CAS  Google Scholar 

  17. Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. Ploidy regulation of gene expression. Science 285, 251–254 (1999).

    Article  CAS  Google Scholar 

  18. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Wu, X. & Haber, J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277–285 (1996).

    Article  CAS  Google Scholar 

  20. Teo, S. H. & Jackson, S. P. Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr. Biol. 10, 165–168 (2000).

    Article  CAS  Google Scholar 

  21. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  Google Scholar 

  22. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Kegel, A., Sjostrand, J. O. & Astrom, S. U. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr. Biol. 11, 1611–1617 (2001).

    Article  CAS  Google Scholar 

  24. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science, 8 November 2001 (10.1126/science.1065961).

  25. Frank-Vaillant, M. & Marcand, S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway. Genes Dev. 15, 3005–3012 (2001).

    Article  CAS  Google Scholar 

  26. Cormack, B. P. et al. Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans. Microbiology 143, 303–311 (1997).

    Article  CAS  Google Scholar 

  27. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest DNA damage. Cell 94, 399–409 (1998).

    CAS  Google Scholar 

  28. Becker, D. M., Fikes, J. D. & Guarente, L. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl Acad. Sci. USA 88, 1968–1972 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for collaboration with A. Gasch, P. Brown and D. Botstein to analyse mRNA abundance under various conditions, and for their generosity in declining to be authors on this paper. S.E.L. is a Hildegarde A. Becher Foundation fellow of The Leukemia and Lymphoma Society. G.H. was supported by the Deutsche Forschungsgesellschaft (DFG). This work was supported by a grant of the Swiss National Science Foundation to M.B. and P.S. and DOE and National Institutes of Health grants to J.E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Haber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, M., Bentele, M., Vaze, M. et al. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414, 666–669 (2001). https://doi.org/10.1038/414666a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414666a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing