Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins


A modern human-like sequence of dental development, as a proxy for the pace of life history, is regarded as one of the diagnostic hallmarks of our own genus Homo1,2,3. Brain size, age at first reproduction, lifespan and other life-history traits correlate tightly with dental development4,5,6. Here we report differences in enamel growth that show the earliest fossils attributed to Homo do not resemble modern humans in their development. We used daily incremental markings in enamel to calculate rates of enamel formation in 13 fossil hominins and identified differences in this key determinant of tooth formation time. Neither australopiths nor fossils currently attributed to early Homo shared the slow trajectory of enamel growth typical of modern humans; rather, both resembled modern and fossil African apes. We then reconstructed tooth formation times in australopiths, in the 1.5-Myr-old Homo erectus skeleton from Nariokotome, Kenya7, and in another Homo erectus specimen, Sangiran S7-37 from Java8. These times were shorter than those in modern humans. It therefore seems likely that truly modern dental development emerged relatively late in human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scatterplots with Lowess regressions of enamel formation rates for samples of hominins.
Figure 2: Timing of dental development in hominins.

Similar content being viewed by others


  1. Bermudez De Castro, J. -M. et al. A modern human pattern of dental development in Lower Pleistocene hominids from Atapuerca-TD6 (Spain). Proc. Natl Acad. Sci. USA 96, 4210–4213 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Wood, B. & Collard, M. The human genus. Science 284, 65–71 (1999).

    Article  CAS  Google Scholar 

  3. Moggi-Cecchi, J. in The Origin of Humankind (eds Aloisi, M., Battaglia, B., Carafoli, E. & Danieli, G. A.) 35–50 (IOS, Amsterdam, 2000).

    Google Scholar 

  4. Smith, B. H. Dental development as a measure of life history in primates. Evolution 43, 683–688 (1989).

    Article  ADS  Google Scholar 

  5. Allman, J. & Hasenstaub, A. Brains, maturation times, and parenting. Neurobiol. Aging 20, 447–454 (1999).

    Article  CAS  Google Scholar 

  6. Kelley, J. in Human Evolution through Developmental Change (eds McNamara, K. J. & Minugh-Purvis, N.). (Johns Hopkins Univ. Press, Baltimore, in the press).

  7. Walker, A. & Leakey, R. The Nariokotome Homo erectus Skeleton (Harvard Univ. Press, Cambridge, Massachusetts, 1993).

    Book  Google Scholar 

  8. Grine, F. E. & Franzen, J. L. Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Courier Forschungsinstitut Senkenberg 171, 75–103 (1994).

    Google Scholar 

  9. Bromage, T. G. Enamel incremental periodicity in the pig-tailed macaque: A polychrome fluorescent labelling study of dental hard tissues. Am. J. Phys. Anthropol. 86, 205–214 (1991).

    Article  Google Scholar 

  10. FitzGerald, C. M. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large scale study. J. Hum. Evol. 35, 371–386 (1998).

    Article  CAS  Google Scholar 

  11. Antoine, D., Dean, C. & Hillson, S. in Dental Morphology 1998 (eds Mayhall, J. T. & Heikkinen, T.) 48–55 (Oulu Univ. Press, Finland, 1999).

    Google Scholar 

  12. Beynon, A. D. & Dean, M. C. Crown formation time of a fossil hominid premolar tooth. Arch. Oral Biol. 32, 773–780 (1987).

    Article  CAS  Google Scholar 

  13. Beynon, A. D., Dean, M. C., Leakey, M. G., Reid, D. J. & Walker, A. Comparative dental development and microstructure of Proconsul teeth from Rusinga Island, Kenya. J. Hum. Evol. 35, 163–209 (1998).

    Article  CAS  Google Scholar 

  14. Dean, M. C., Beynon, A. D., Thackeray, J. F. & Macho, G. A. Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. Am. J. Phys. Anthropol. 91, 401–419 (1993).

    Article  CAS  Google Scholar 

  15. Boyde, A. in Primate Life History and Evolution (ed. DeRousseau, J.) 229–267 (Wiley-Liss, New York, 1990).

    Google Scholar 

  16. Risnes, S. Growth tracks in enamel. J. Hum. Evol. 35, 331–350 (1998).

    Article  CAS  Google Scholar 

  17. Schwartz, G. T. Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. Am. J. Phys. Anthropol. 111, 221–240 (2000).

    Article  CAS  Google Scholar 

  18. Beynon, A. D. & Wood, B. A. Variations in enamel thickness and structure in East African hominids. Am. J. Phys. Anthropol. 70, 177–193 (1986).

    Article  CAS  Google Scholar 

  19. Grine, F. E. & Martin, L. B. in Evolutionary History of the Robust Australopithecines (ed. Grine, F. E.) 3–42 (Aldine de Gruyter, New York, 1988).

    Google Scholar 

  20. Smith, B. H. Patterns of dental development in Homo, Australopithecus, Pan and Gorilla. Am. J. Phys. Anthropol. 94, 307–325 (1994).

    Article  CAS  Google Scholar 

  21. Beynon, A. D. & Dean, M. C. Distinct dental development patterns in early fossil hominids. Nature 335, 509–514 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Dean, M. C. Progress in understanding hominoid dental development. J. Anat. 197, 77–101 (2000).

    Article  Google Scholar 

  23. Bromage, T. G. & Dean, M. C. Re-evaluation of the age at death of immature fossil hominids. Nature 317, 525–527 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Schwartz, G. T., Reid, D. J. & Dean, M. C. Developmental aspects of sexual dimorphism in hominoid canines. Int. J. Primatol. 22, 837–860 (2001).

    Article  Google Scholar 

  25. Lovejoy, C. O., Cohn, M. J. & White, T. D. Morphological analysis of the mammalian postcranium: A developmental perspective. Proc. Natl Acad. Sci. USA 96, 13247–13252 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Jernvall, J. & Han-Sung, J. Genotype, phenotype and developmental biology of molar tooth characters. Yearb. Phys. Anthropol. 43, 171–190 (2000).

    Article  Google Scholar 

  27. Wood, B. A. Hominid Cranial Remains Koobi Fora Research Project Vol. 4. (Clarendon, Oxford, 1991).

    Google Scholar 

  28. Ramirez Rozzi, F. V. Can enamel microstructure be used to establish the presence of different species of Plio-Pleistocene hominids from Omo, Ethiopia? J. Hum. Evol. 35, 543–576 (1998).

    Article  CAS  Google Scholar 

  29. Smith, B. H. & Tompkins, R. L. Towards a life history of the Hominidae. Ann. Rev. Anthropol. 24, 257–279 (1995).

    Article  Google Scholar 

  30. Reid, D. J. & Dean, M. C. The timing of linear hypoplasias on human anterior teeth. Am. J. Phys. Anthropol. 113, 135–139 (2000).

    Article  CAS  Google Scholar 

Download references


We thank The Government of Kenya; The National Museums of Kenya; Forschungsinstitut Senckenberg, Frankfurt am Main, Germany; the Natural History Museum, London; and F. Thackeray of the Transvaal Museum, South Africa for access to fossil material. We thank D. Antoine, B. Berkovitz, D. Beynon, D. Clements, C. FitzGerald, L. Humphrey, J. Jernvall, J. Kelley, C. Kiarie, R. Krusynski, D. Lieberman, G. Macho, P. O'Higgins, J. Pendjiky, F. Ramirez Rozzi, H. Smith, P. Smith, F. Spoor, P. Walton and B. Wood for their help. This research was enabled by research grants to C.D. from the Royal Society and the Leverhulme Trust.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christopher Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, C., Leakey, M., Reid, D. et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414, 628–631 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing