Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes

Abstract

Over 70 lakes have now been identified beneath the Antarctic ice sheet. Although water from none of the lakes has been sampled directly, analysis of lake ice frozen (accreted) to the underside of the ice sheet above Lake Vostok, the largest of these lakes, has allowed inferences to be made on lake water chemistry and has revealed small quantities of microbes. These findings suggest that Lake Vostok is an extreme, yet viable, environment for life. All subglacial lakes are subject to high pressure (350 atmospheres), low temperatures (about -3 °C) and permanent darkness. Any microbes present must therefore use chemical sources to power biological processes. Importantly, dissolved oxygen is available at least at the lake surface, from equilibration with air hydrates released from melting basal glacier ice. Microbes found in Lake Vostok's accreted ice are relatively modern, but the probability of ancient lake-floor sediments leads to a possibility of a very old biota at the base of subglacial lakes.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The technique of airborne radio-echo sounding, and its application to identifying Lake Vostok and other subglacial lakes.
Figure 2: The dimensions and topographic setting of Lake Vostok.
Figure 3: Ice sheet cross-sections along the line of ice flow from the ice divide, across Lake Vostok, to the Vostok ice core.
Figure 4: Water circulation patterns within Lake Vostok under fresh and saline conditions.
Figure 5: A microscope image of a gas hydrate (or clathrate) structure found in Lake Vostok's accreted ice 3,566 m below the ice-sheet surface, which is 174 m above the lake surface.
Figure 6: Images of bacteria frozen into Lake Vostok's accreted ice6.

References

  1. Siegert, M. J., Dowdeswell, J. A., Gorman, M. R. & McIntyre, N. F. An inventory of Antarctic subglacial lakes. Ant. Science 8, 281–286 (1996).

    ADS  Article  Google Scholar 

  2. Oswald, G. K. A. & Robin, G. de Q. Lakes beneath the Antarctic Ice Sheet. Nature 245, 251–254 (1973).

    ADS  Article  Google Scholar 

  3. Petit, J. R. et al. Climate atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    ADS  CAS  Article  Google Scholar 

  4. Jouzel, J. et al. More than 200 meters of lake ice above subglacial Lake Vostok, Antarctica. Science 286, 2138–2141 (1999).

    CAS  Article  Google Scholar 

  5. Karl, D. M. et al. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286, 2144–2147 (1999).

    CAS  Article  Google Scholar 

  6. Priscu, J. C. et al. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286, 2141–2144 (1999).

    CAS  Article  Google Scholar 

  7. Souchez, R., Petit, J. R., Tison, J.-L., Jouzel, J. & Verbeke, V. Ice formation in subglacial Lake Vostok, Central Antarctica. Earth Planet. Sci. Lett. 181, 529–538 (2000).

    ADS  CAS  Article  Google Scholar 

  8. Kapitsa, A., Ridley, J. K., Robin, G. de Q., Siegert, M. J. & Zotikov, I. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–686 (1996).

    ADS  CAS  Article  Google Scholar 

  9. Gorman, M. R. & Siegert, M. J. Penetration of Antarctic subglacial water masses by VHF electromagnetic pulses: estimates of minimum water depth and conductivity. J. Geophys. Res. 104, 29311–29320 (1999).

    ADS  Article  Google Scholar 

  10. Dowdeswell, J. A. & Siegert, M. J. The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets. Geol. Soc. Am. Bull. 111, 254–263 (1999).

    ADS  Article  Google Scholar 

  11. Siegert, M. J., Kwok, R., Mayer, C. & Hubbard, B. Water exchange between the subglacial Lake Vostok and the overlying ice sheet. Nature 403, 643–646 (2000).

    ADS  CAS  Article  Google Scholar 

  12. Siegert, M. J. & Kwok, R. Ice-sheet radar layering and the development of preferred crystal orientation fabrics between Lake Vostok and Ridge B, central East Antarctica. Earth Planet. Sci. Lett. 179, 227–235 (2000).

    ADS  CAS  Article  Google Scholar 

  13. Siegert, M. J. & Ridley, J. K. An analysis of the ice-sheet surface and subsurface topography above the Vostok Station subglacial lake, central East Antarctica. J. Geophys. Res. 103, 10195–10208 (1998).

    ADS  Article  Google Scholar 

  14. Jean-Baptiste, P., Petit, J. R., Lipenkov, V. Ya., Raynaud, D. & Barkov, N. I. Helium isotope in deep Vostok ice core (Antarctica): constraints on hydrothermal processes and water exchange in the subglacial lake. Nature 411, 460–462 (2001).

    ADS  CAS  Article  Google Scholar 

  15. Lukin, V. V. et al. Rezult'taty geofizicheskih issledovaniy podlednikovogo ozera Vostok (Antarktida) v 1995–1999 gg. [Results of geophysical studies of subglacial Lake Vostok (Antarctica) in 1995–1999]. Problemy Arktiki i Antarktiki 72 (Jubilee issue), 237–248 (2000) (in Russian).

    Google Scholar 

  16. Barrett, P. J. Antarctic palaeoenvironments through Cenozoic times. Terra Antarctica 3, 103–119 (1996).

    Google Scholar 

  17. Salamatin, A. N. in Physics of Ice Core Records (ed. Hondoh, T.) 243–282 (Hokkaido Univ. Press, Sapporo, Japan, 2000).

    Google Scholar 

  18. Stroeven, A. P., Burckle, L. H., Kleman, J. & Prentice, M. L. Atmospheric transport of diatoms in the Antarctic Sirius Group: Pliocene deep freeze. GSA Today 8, 1–5 (1998).

    Google Scholar 

  19. Lipenkov, V. Ya., Barkov, N. I. & Salamatin, A. N. Isotoriya klimata i oledeneniya Antarktidy po rezul'tatam izucheniya ledanogo kerna so stantsii Vostok [The history of climate and glaciation of Antarctica from results of the ice core study at Vostok Station]. Problemy Arktiki i Antarktiki 72 (Jubilee issue), 197–236 (2000) (in Russian).

    Google Scholar 

  20. Barkov, N. I., Vostrtsov, R. N., Lipenkov, V. Ya. & Salamatin, A. N. Kolebaniya temperatury vozdukha i osadkov v rayone stantsii Vostok na protyazhenii chetyryeh klimaticheskih tsyklov za posledniye 420 tys. let [Air temperature and precipitation variation sin Vostok Station area through four climatic cycles during recent 420 kyears]. Arktika i Antarktika 1 (in the press, 2001) (in Russian).

  21. Mayer, C. & Siegert, M. J. Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica. J. Glaciol. 46, 197–205 (2000).

    ADS  Article  Google Scholar 

  22. Kwok, R., Siegert, M. J. & Carsey, F. Ice motion over Lake Vostok. J. Glaciol. 46, 689–694 (2000).

    ADS  Article  Google Scholar 

  23. Salamatin, A. N., Vorstrtsov, R. N., Petit, J. R., Lipenkov, V. Ya. & Barkov, N. I. Geophysical and paleoclimatic implications of the stacked temperature profile from the deep borehole at Vostok station, Antarctica. Mater. Glyatsiol. Issled. 85, 233–240 (1998).

    Google Scholar 

  24. Wüest, A. & Carmack, E. A priori estimates of mixing and circulation in the hard-to-reach water body of Lake Vostok. Ocean Model. 2, 29–49 (2000).

    ADS  Article  Google Scholar 

  25. Williams, M. J. M. Application of a three-dimensional numerical model to Lake Vostok: An Antarctic subglacial lake. Geophys. Res. Lett. 28, 531–534 (2001).

    ADS  Article  Google Scholar 

  26. Mayer, C., Grosfeld, K. & Siegert, M. J. Water circulation and mass exchange within subglacial Lake Vostok. Earth Planet. Sci. Lett. (submitted).

  27. Killawee, J. A., Fairchild, I. J., Tison, J.-L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochim. Cosmochim. Acta 62, 3637–3655 (1998).

    ADS  CAS  Article  Google Scholar 

  28. Tranter, M. et al. Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland—a new model. Hydrol. Process. (in the press).

  29. Lee, S. Y. & Holder, G. D. A generalized model for calculating equilibrium states of gas hydrates. Ann. NY Acad. Sci. USA 912, 614–622 (2000).

    ADS  CAS  Article  Google Scholar 

  30. Uchida, T., Hondoh, T., Mae, S., Lipenkov, V. Ya. & Duval, P. Air hydrate crystals in deep ice-core samples from Vostok Station, Antarctica. J. Glaciol. 40, 79–86 (1994).

    ADS  Article  Google Scholar 

  31. Lipenkov, V. Ya. in Physics of Ice Core Records (ed. Hondoh, T.) 327–358 (Hokkaido Univ. Press, Sapporo, Japan, 2000).

    Google Scholar 

  32. Kuhs, W. F., Klapproth, A. & Chazallon, B. in Physics of Ice Core Records (ed. Hondoh, T.) 373–392 (Hokkaido Univ. Press, Sapporo, Japan, 2000).

    Google Scholar 

  33. Lipenkov, V. Ya. & Istomin, V. A. On the stability of air clathrate-hydrate crystals in subglacial Lake Vostok, Antarctica. Mater. Glyatsiol. Issled. 91 (in the press, 2001).

  34. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d'Arolla, Switzerland. Hydrol. Process. (in the press).

  35. Ellis-Evans, J. C. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity Conserv. 5, 1395–1431 (1996).

    Article  Google Scholar 

  36. Priscu, J. C. et al. Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49, 997–1008 (1999).

    Article  Google Scholar 

  37. Rochschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    ADS  Article  Google Scholar 

  38. Christner, B. C., Mosley-Thompson, E., Thompson, L. G. & Reeve, J. V. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Appl. Env. Microbiol. (in the press).

  39. Abyzov, S. S., Mitskevich, I. N. & Poglazova, M. N. Microflora of the deep glacier horizons of central Antarctica. Microbiology 67, 66–73 (1998).

    Google Scholar 

  40. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9417 (1998).

    ADS  CAS  Article  Google Scholar 

  41. Fang, J. S., Barcelona, M. J., Nogi, Y. & Kato, C. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep Sea Res. 47, 1173–1182 (2000).

    CAS  Article  Google Scholar 

  42. Gaidos, E. J., Nealson, K. H. & Kirschvink, J. L. Life in ice-covered oceans. Science 284, 1631–1633 (1999).

    CAS  Article  Google Scholar 

  43. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A neo-proterozoic snowball earth. Science 281, 1342–1346 (1998).

    ADS  CAS  Article  Google Scholar 

  44. Siegert, M. J. Antarctic subglacial lakes. Earth Sci. Rev. 50, 29–50 (2000).

    ADS  Article  Google Scholar 

  45. Bell, R. E., Studinger, M., Tikku, A. A., Clarke, G. K. C. & Gutner, M. M. Evidence for open-system water exchange in subglacial Lake Vostok. Nature (submitted).

  46. Tabacco, I. E. et al. Airborne radar survey above Lake Vostok region, central East Antarctica. Lake Geometry and internal layer analysis. J. Glaciol. (submitted).

  47. Kennicutt, M. C. (ed.) Subglacial lake exploration: workshop report and recommendations. (Scientific Committee on Antarctic Research, 2001).

Download references

Acknowledgements

Many of the ideas developed in this review were formed during discussions at the International Conference on Antarctic Subglacial Lakes (1999), and two other international workshops: “Lake Vostok Study: Scientific Objectives and Technological Requirements” (1998); and “Lake Vostok: a curiosity or a focus for interdisciplinary study?” (1998). We thank the sponsors and organizers of these meetings (see http://salegos-scar.montana.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Siegert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siegert, M., Ellis-Evans, J., Tranter, M. et al. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–609 (2001). https://doi.org/10.1038/414603a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414603a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing