Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast DNA ligase IV mediates non-homologous DNA end joining

Abstract

The discovery of homologues from the yeast Saccharomyces cerevisiae of the human Ku DNA-end-binding proteins (HDF1 and KU80) has established that this organism is capable of non-homologous double-strand end joining (NHEJ)1,2,3,4,5, a form of DNA double-strand break repair (DSBR) active in mammalian V(D)J recombination6,7,8. Identification of the DNA ligase that mediates NHEJ in yeast will help elucidate the function of the four mammalian DNA ligases in DSBR, V(D)J recombination and other reactions9,10. Here we show that S. cerevisiae has two typical DNA ligases, the known DNA ligase I homologue CDC9 (refs 11,12, 13, 14) and the previously unknown DNA ligase IV homologue DNL4. dnl4 mutants are deficient in precise and end-processed NHEJ. DNL4 and HDF1 are epistatic in this regard, with the mutation of each having equivalent effects. dn14 mutants are complemented by overexpression of Dnl4 but not of Cdc9, and deficiency of Dnl4 alone does not impair either cell growth or the Cdc9-mediated responses to ionizing and ultraviolet radiation. Thus, S.cerevisiae has two distinct and separate ligation pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple sequence alignment of human DNA ligase I (hDNL1), yeast CDC9, human DNA ligase IV (hDNL4) and yeast DNL4.
Figure 2: GST–Dnl4 is a pre-adenylated DNA ligase.
Figure 3: Dnl4 is required for NHEJ but not for excision or homologous DNA repair.
Figure 4: Imprecise NHEJ events in HDF1/DNL4 yeast show microdeletion and end-filling.

Similar content being viewed by others

References

  1. Feldmann, H. & Winnacker, E. L. Aputative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268, 12895–12900 (1993).

    CAS  PubMed  Google Scholar 

  2. Milne, G. T., Jin, S., Shannon, K. B. & Weaver, D. T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4189–4198 (1996).

    Article  CAS  Google Scholar 

  3. Boulton, S. J. & Jackson, S. P. S. cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  Google Scholar 

  4. Moore, J. K. & Haber, J. aE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in S. cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  5. Boulton, S. & Jackson, S. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 (1996).

    Article  CAS  Google Scholar 

  6. Lieber, M. R. Immunoglobulin diversity: rearranging by cutting and repairing. Curr. Biol. 6, 134–136 (1996).

    Article  CAS  Google Scholar 

  7. Weaver, D., Boubnov, N., Wills, Z., Hall, K. & Staunton, J. V(D)J recombination: double-strand break repair gene products used in the joining mechanism. Ann. N.Y. Acad. Sci. 764, 99–111 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Jeggo, P. A., Taccioli, G. E. & Jackson, S. P. Ménage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 17, 949–957 (1995).

    Article  CAS  Google Scholar 

  9. Lindahl, T. Recognition and processing of damaged DNA. J. Cell. Sci. (suppl.) 19, 73–77 (1995).

    Article  CAS  Google Scholar 

  10. Lindahl, T. & Barnes, D. E. Mammalian DNA ligases. Annu. Rev. Biochem. 61, 251–281 (1992).

    Article  CAS  Google Scholar 

  11. Wilcox, D. R. & Prakash, L. Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J. Bacteriol. 148, 618–623 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomkinson, A. E., Tappe, N. J. & Friedberg, E. C. DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene product. Biochemistry 31, 11762–11771 (1992).

    Article  CAS  Google Scholar 

  13. Moore, C. W. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity. J. Bacteriol. 150, 1227–1233 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barker, D. G., White, J. H. & Johnston, L. H. The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage. Nucleic Acids Res. 13, 8323–8337 (1985).

    Article  CAS  Google Scholar 

  15. Hsieh, C. L., Arlett, C. F. & Lieber, M. R. V(D)J recombination in ataxia telangiectasia, Bloom's syndrome, and a DNA ligase I-associated immunodeficiency disorder. J. Biol. Chem. 268, 20105–20109 (1993).

    CAS  PubMed  Google Scholar 

  16. Petrini, J., Donovan, J. W., Dimare, C. & Weaver, D. T. Normal V(D)J coding junction formation in DNA ligase I deficiency syndromes. J. Immunol. 152, 176–183 (1994).

    CAS  PubMed  Google Scholar 

  17. Wei, Y. F. et al. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15, 3206–3216 (1995).

    Article  CAS  Google Scholar 

  18. Robins, P. & Lindahl, T. DNA ligase IV from HeLa cell nuclei. J. Biol. Chem. 271, 24257–24261 (1996).

    Article  CAS  Google Scholar 

  19. Siede, W., Friedl, A. A., Dianova, I., Eckardt-Schupp, F. & Friedberg, E. C. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142, 91–102 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Schuler, G. D., Altschul, S. F. & Lipman, D. J. Aworkbench for multiple alignment construction and analysis. Proteins: Struct. Funct. Genet. 9, 180–190 (1991).

    Article  CAS  Google Scholar 

  22. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. Asimple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

  23. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

  24. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Johnston for reagents for yeast-gene disruption, and for helpful discussion on the design of these experiments. T.E.W. is a Howard Hughes Medical Institute physician postdoctoral fellow. This research is supported by NIH grants to M.R.L. M.R.L. is a Leukemia Society of America Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, T., Grawunder, U. & Lieber, M. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997). https://doi.org/10.1038/41365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41365

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing