Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of genetic redundancy

Abstract

Genetic redundancy means that two or more genes are performing the same function and that inactivation of one of these genes has little or no effect on the biological phenotype. Redundancy seems to be widespread in genomes of higher organisms1,2,3,4,5,6,7,8,9. Examples of apparently redundant genes come from numerous studies of developmental biology10,11,12,13,14,15, immunology16,17, neurobiology18,19 and the cell cycle20,21. Yet there is a problem: genes encoding functional proteins must be under selection pressure. If a gene was truly redundant then it would not be protected against the accumulation of deleterious mutations. A widespread view is therefore that such redundancy cannot be evolutionarily stable. Here we develop a simple genetic model to analyse selection pressures acting on redundant genes. We present four cases that can explain why genetic redundancy is common. In three cases, redundancy is even evolutionarily stable. Our theory provides a framework for exploring the evolution of genetic organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of genetic redundancy.
Figure 2: Complex redundancy–pleiotropy networks evolve if the mutation rate of complete inactivation of a gene is higher than the mutation rate of inactivating only one function of a gene while leaving other functions unaffected.
Figure 3: Developmental errors can provide selection pressure to maintain genetic redundancy.

Similar content being viewed by others

References

  1. Brookfield, J. F. Y. Genetic redundancy. Adv. Genet. 36, 137–155 (1997).

    Article  CAS  Google Scholar 

  2. Brookfield, J. F. Y. Can genes be truly redundant? Curr. Biol. 2, 553–554 (1992).

    Article  CAS  Google Scholar 

  3. Tautz, D. Redundancies, development and the flow of information. BioEssays 14, 263–266 (1992).

    Article  CAS  Google Scholar 

  4. Goldstein, D. B. & Holsinger, K. E. Maintenance of polygenic variation in spatially structured populations. Evolution 46, 412–429 (1992).

    Article  Google Scholar 

  5. Thomas, J. H. Thinking about genetic redundancy. Trends Genet. 9, 395–399 (1993).

    Article  CAS  Google Scholar 

  6. Dover, G. A. Evolution of genetic redundancy for advanced players. Curr. Opin. Genet. Dev. 3, 902–910 (1993).

    Article  CAS  Google Scholar 

  7. Pickett, F. B. & Meeks-Wagner, D. R. Seeing double: appreciating genetic redundancy. Plant Cell 7, 1347–1356 (1995).

    Article  CAS  Google Scholar 

  8. Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).

    Article  CAS  Google Scholar 

  9. O'Brien, S. J. On estimating function gene number in eukaryotes. Nature New Biol. 242, 52–54 (1973).

    Article  CAS  Google Scholar 

  10. Kastner, P. et al. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  Google Scholar 

  11. Rudnicki, M. A. et al. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383–390 (1992).

    Article  CAS  Google Scholar 

  12. Saga, Y. et al. Mice develop normally without tenascin. Genes Dev. 6, 1821–1831 (1992).

    Article  CAS  Google Scholar 

  13. Yang, Y. et al. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379, 823–825 (1996).

    Article  ADS  Google Scholar 

  14. Joyner, A. L. et al. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251, 1239–1243 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Laney, J. D. & Biggin, M. D. Redundant control of Ultrabithorax by zeste involves functional levels of zeste protein binding at the Ultrabithorax promoter. Development 122, 2303–2311 (1996).

    CAS  PubMed  Google Scholar 

  16. Schorle, H. et al. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268, 251–255 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Steindler, D. A. et al. Tenascin Knockout Mice: Barrels, Boundary Molecules, and Glial Scars. J. Neurosci. 15, 1971–1983 (1995).

    Article  CAS  Google Scholar 

  19. Pekny, M. et al. Mice lacking glial fibrallary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14, 1590–1598 (1995).

    Article  CAS  Google Scholar 

  20. Reed, S. I. G1-specific cyclins in search of an S-phase promoting factor. Trends Genet. 7, 95–99 (1991).

    Article  CAS  Google Scholar 

  21. Roche, S. et al. Requirement for Src family protein tyrosine kinases in G-2 for fibroblast cell division. Science 269, 1567–1569 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Fisher, R. A. The sheltering of lethals. Am. Nat. 69, 446–455 (1935).

    Article  Google Scholar 

  23. Christiansen, F. B. & Frydenberg, O. Selection-mutation balance for two nonallelic recessives producing an inferior double homozygote. Am. J. Hum. Genet. 29, 195–207 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bailey, G. S. et al. Gene duplication in tetraploid fish: model for gene silencing at unlinked loci. Proc. Natl Acad. Sci. USA 75, 5575–5579 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Allendorf, F. W. Protein polymorphism and the rate of loss of duplicate gene expression. Nature 272, 76–78 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Kimura, M. & King, J. L. Fixation of a deleterious allele at one of two duplicate loci by mutation pressure and random drift. Proc. Natl Acad. Sci. USA 76, 2858–2861 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Li, W.-H. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fish. Genetics 95, 237–258 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohta, T. Time for spreading of compensatory mutations under gene duplication. Genetics 123, 579–584 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, X. & Noll, M. Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367, 83–87 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Krakauer, D. C. & Pagel, M. Selection by somatic signals. Phil. Trans. R. Soc. Lond. B 351, 647–658 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Krakauer and K. Sigmund for discussion. This work was supported by the Wellcome Trust (M.A.N.) and the European Community (M.C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, M., Boerlijst, M., Cooke, J. et al. Evolution of genetic redundancy. Nature 388, 167–171 (1997). https://doi.org/10.1038/40618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40618

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing