Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled production of aligned-nanotube bundles

Abstract

Carbon nanotubes1,2 might be usefully employed in nanometre-scale engineering and electronics. Electrical conductivity measurements on the bulk material3,4, on individual multi-walled5,6 and single-walled7 nanotubes and on bundles of single-walled nanotubes8,9 have revealed that they may behave as metallic, insulating or semiconducting nanowires, depending on the method of production—which controls the degree of graphitization, the helicity and the diameter. Measurements of Young's modulus show10 that single nanotubes are stiffer than commercial carbon fibres. Methods commonly used to generate nanotubes—carbon-arc discharge techniques1,2,4, catalytic pyrolysis of hydrocarbons11,12 and condensed-phase electrolysis13,14—generally suffer from the drawbacks that polyhedral particles are also formed and that the dimensions of the nanotubes are highly variable. Here we describe a method for generating aligned carbon nanotubes by pyrolysis of 2-amino-4,6-dichloro-s-triazine over thin films of a cobalt catalyst patterned on a silica substrate by laser etching. The use of a patterned catalyst apparently encourages the formation of aligned nanotubes. The method offers control over length (up to about 50 μm) and fairly uniform diameters (30–50 nm), as well as producing nanotubes in high yield, uncontaminated by polyhedral particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM image showing uniform tracks etched by the laser beam.
Figure 2
Figure 3: SEM images of aligned nanotube bundles.
Figure 4: TEM image of a typical region filled with pure nanotubes dispersed by sonication.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Ebbesen, T. W. & Ajayan, P. M. Large scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  3. De Heer, W. A., Chatelain, A. & Ugarte, D. Acarbon nanotube field-emission electron source. Science 270, 1179–1180 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Terrones, M. et al. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials Vol. 2(eds Kadish, K. M. & Ruoff, R. S.) 599–620 (Electrochem. Soc., Pennington, NJ, (1995)).

    Google Scholar 

  5. Dai, H. J., Wong, E. W. & Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  9. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young's modulus observed for individual nanotubes. Nature 381, 678–680 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Amelinckx, S. et al. Aformation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265, 635–639 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Endo, M. et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibres. Carbon 33, 873–881 (1995).

    Article  CAS  Google Scholar 

  13. Hsu, W. K. et al. Condensed-phase nanotubes. Nature 377, 687 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Hsu, W. K. et al. Electrolytic formation of carbon nanostructures. Chem. Phys. Lett. 261, 161–166 (1996).

    Article  ADS  Google Scholar 

  15. Thurston, J. T. et al. Cyanuric chloride derivatives I. Aminochloro-s-triazines. J. Am. Chem. Soc. 73, 2981–2983 (1951).

    Article  CAS  Google Scholar 

  16. Chrisey, D. B. & Hubler, G. K. (eds) Pulsed Laser Deposition of Thin Films(Wiley, New York, (1994)).

    Google Scholar 

  17. Terrones, M. et al. Pyrolytically grown BxCyNznanomaterials: nanofibres and nanotubes. Chem. Phys. Lett. 257, 576–582 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Li, W. Z. et al. Large synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Tennent, H. G., Barber, J. J. & Hoch, R. US Patent No. 5578543((1996)).

    Google Scholar 

  20. Hausslein, R. W. Commercial manufacture and uses of carbon nanotubules. 187th Mtg of the Electrochem. Soc. (Abstr.) 175 (Electrochem. Soc., Pennington, NJ, (1995)).

  21. Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Thorpe, D. P. Randall, S. Tehuacanero, R. Hernández, P. Mexía, R. Guardián and L. Rendón for providing electron microscope facilities, and D. Bernaerts for discussions. We thank CONACYT-México (M.T. and H.T.), the ORS scheme for scholarships (M.T. and W.K.H.), DGAPA-UNAM IN 107-296 (H.T.), EU-TMR grant (J.O.), the Royal Society (London) and the EPSRC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. M. Walton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrones, M., Grobert, N., Olivares, J. et al. Controlled production of aligned-nanotube bundles. Nature 388, 52–55 (1997). https://doi.org/10.1038/40369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40369

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing