Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity

Abstract

Individual differences in traits such as impulsivity involve high reward sensitivity and are associated with risk for substance use disorders. The ventral striatum (VS) has been widely implicated in reward processing, and individual differences in its function are linked to these disorders. Dopamine (DA) plays a critical role in reward processing and is a potent neuromodulator of VS reactivity. Moreover, altered DA signaling has been associated with normal and pathological reward-related behaviors. Functional polymorphisms in DA-related genes represent an important source of variability in DA function that may subsequently impact VS reactivity and associated reward-related behaviors. Using an imaging genetics approach, we examined the modulatory effects of common, putatively functional DA-related polymorphisms on reward-related VS reactivity associated with self-reported impulsivity. Genetic variants associated with relatively increased striatal DA release (DRD2 −141C deletion) and availability (DAT1 9-repeat), as well as diminished inhibitory postsynaptic DA effects (DRD2 −141C deletion and DRD4 7-repeat), predicted 9–12% of the interindividual variability in reward-related VS reactivity. In contrast, genetic variation directly affecting DA signaling only in the prefrontal cortex (COMT Val158Met) was not associated with variability in VS reactivity. Our results highlight an important role for genetic polymorphisms affecting striatal DA neurotransmission in mediating interindividual differences in reward-related VS reactivity. They further suggest that altered VS reactivity may represent a key neurobiological pathway through which these polymorphisms contribute to variability in behavioral impulsivity and related risk for substance use disorders.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Manuck SB, Flory JD, Muldoon MF, Ferrell RE . A neurobiology of intertemporal choice. In: Loewenstein G, Read D, Baumeister RF (eds). Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice. Sage: New York, 2003, pp 139–172.

    Google Scholar 

  2. Alessi SM, Petry NM . Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Processes 2003; 64: 345–354.

    Article  Google Scholar 

  3. Bickel WK, Odum AL, Madden GJ . Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers. Psychopharmacology (Berl) 1999; 146: 447–454.

    CAS  Article  Google Scholar 

  4. Kirby KN, Petry NM, Bickel WK . Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J Exp Psychol Gen 1999; 128: 78–87.

    CAS  Article  Google Scholar 

  5. Madden GJ, Petry NM, Badger GJ, Bickel WK . Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: drug and monetary rewards. Exp Clin Psychopharmacol 1997; 5: 256–262.

    CAS  Article  Google Scholar 

  6. Berridge KC, Robinson TE . Parsing reward. Trends Neurosci 2003; 26: 507–513.

    CAS  Article  Google Scholar 

  7. Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB . Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 2006; 26: 13213–13217.

    CAS  Article  Google Scholar 

  8. Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G . Neural predictors of purchases. Neuron 2007; 53: 147–156.

    CAS  Article  Google Scholar 

  9. Kalivas PW, Volkow ND . The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005; 162: 1403–1413.

    Article  Google Scholar 

  10. Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ . Limbic corticostriatal systems and delayed reinforcement. Ann NY Acad Sci 2004; 1021: 33–50.

    Article  Google Scholar 

  11. Kelley AE . Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 2004; 44: 161–179.

    CAS  Article  Google Scholar 

  12. Depue RA, Luciana M, Arbisi P, Collins P, Leon A . Dopamine and the structure of personality: relation of agonist-induced dopamine activity to positive emotionality. J Pers Soc Psychol 1994; 67: 485–498.

    CAS  Article  Google Scholar 

  13. Hyman SE, Malenka RC, Nestler EJ . Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565–598.

    CAS  Article  Google Scholar 

  14. Volkow ND, Fowler JS, Wang GJ . Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 1999; 13: 337–345.

    CAS  Article  Google Scholar 

  15. Hariri AR, Drabant EM, Weinberger DR . Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry 2006; 59: 888–897.

    CAS  Article  Google Scholar 

  16. Hariri AR, Weinberger DR . Imaging genomics. Br Med Bull 2003; 65: 259–270.

    CAS  Article  Google Scholar 

  17. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P . The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 2001; 11: 449–455.

    CAS  Article  Google Scholar 

  18. Cheon KA, Ryu YH, Kim JW, Cho DY . The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 2005; 15: 95–101.

    CAS  Article  Google Scholar 

  19. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000; 22: 133–139.

    CAS  Article  Google Scholar 

  20. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT–PCR. Am J Med Genet 2002; 114: 975–979.

    Article  Google Scholar 

  21. VanNess SH, Owens MJ, Kilts CD . The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55.

    Article  Google Scholar 

  22. Arinami T, Gao M, Hamaguchi H, Toru M . A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–582.

    CAS  Article  Google Scholar 

  23. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH . Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995; 65: 1157–1165.

    CAS  Article  Google Scholar 

  24. Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, Grady DL et al. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 2004; 74: 931–944.

    CAS  Article  Google Scholar 

  25. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    CAS  Article  Google Scholar 

  26. First MB, Spitzer RL, Gibbon M, Williams JBM . Structured Clinical Interview for DSM-IV Axis I Disorders, research version, non-patient edition. New York State Psychiatric Institute, Biometrics Research Department: New York, 1996.

    Google Scholar 

  27. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    CAS  Article  Google Scholar 

  28. Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ . A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993; 2: 767–773.

    CAS  Article  Google Scholar 

  29. Gelernter J, Kranzler H, Cubells JF, Ichinose H, Nagatsu T . DRD2 allele frequencies and linkage disequilibria, including the −141CIns/Del promoter polymorphism, in European-American, African-American, and Japanese subjects. Genomics 1998; 51: 21–26.

    CAS  Article  Google Scholar 

  30. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    CAS  Article  Google Scholar 

  31. Barratt ES . Impulsiveness and aggression. In: Monahan J, Steadman HJ (eds). Violence and Mental Disorder: Developments in Risk Assessment. University of Chicago Press: Chicago, 1994, pp 61–79.

    Google Scholar 

  32. Patton JH, Stanford MS, Barratt ES . Factor structure of the Barratt impulsiveness scale. J Clin Psychol 1995; 51: 768–774.

    CAS  Article  Google Scholar 

  33. Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF . A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 2000; 95: 9–23.

    CAS  Article  Google Scholar 

  34. Manuck SB, Flory JD, McCaffery JM, Matthews KA, Mann JJ, Muldoon MF . Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology 1998; 19: 287–299.

    CAS  Article  Google Scholar 

  35. Dawe S, Loxton NJ . The role of impulsivity in the development of substance use and eating disorders. Neurosci Biobehav Rev 2004; 28: 343–351.

    Article  Google Scholar 

  36. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA . Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 2000; 84: 3072–3077.

    CAS  Article  Google Scholar 

  37. Delgado MR, Miller MM, Inati S, Phelps EA . An fMRI study of reward-related probability learning. Neuroimage 2005; 24: 862–873.

    CAS  Article  Google Scholar 

  38. Haruno M, Kuroda T, Doya K, Toyama K, Kimura M, Samejima K et al. A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. J Neurosci 2004; 24: 1660–1665.

    CAS  Article  Google Scholar 

  39. Breiter HC, Rosen BR . Functional magnetic resonance imaging of brain reward circuitry in the human. Ann NY Acad Sci 1999; 877: 523–547.

    CAS  Article  Google Scholar 

  40. Knutson B, Cooper JC . Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 2005; 18: 411–417.

    Article  Google Scholar 

  41. Reeves S, Bench C, Howard R . Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 2002; 17: 359–370.

    CAS  Article  Google Scholar 

  42. Siessmeier T, Kienast T, Wrase J, Larsen JL, Braus DF, Smolka MN et al. Net influx of plasma 6-[18F]fluoro-l-DOPA (FDOPA) to the ventral striatum correlates with prefrontal processing of affective stimuli. Eur J Neurosci 2006; 24: 305–313.

    Article  Google Scholar 

  43. Menon M, Jensen J, Vitcu I, Graff-Guerrero A, Crawley A, Smith MA et al. Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: effects of dopaminergic modulation. Biological Psychiatry 62: 765–772.

    CAS  Article  Google Scholar 

  44. Hariri AR, Mattay VS, Tessitore A, Fera F, Smith WG, Weinberger DR . Dextroamphetamine modulates the response of the human amygdala. Neuropsychopharmacology 2002; 27: 1036–1040.

    CAS  Article  Google Scholar 

  45. Tessitore A, Hariri AR, Fera F, Smith WG, Chase TN, Hyde TM et al. Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. J Neurosci 2002; 22: 9099–9103.

    CAS  Article  Google Scholar 

  46. Oswald LM, Wong DF, Zhou Y, Kumar A, Brasic J, Alexander M et al. Impulsivity and chronic stress are associated with amphetamine-induced striatal dopamine release. Neuroimage 2007; 36: 153–166.

    Article  Google Scholar 

  47. Sesack SR, Hawrylak VA, Guido MA, Levey AI . Cellular and subcellular localization of the dopamine transporter in rat cortex. Adv Pharmacol 1998; 42: 171–174.

    CAS  Article  Google Scholar 

  48. Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001; 24: 553–560.

    CAS  Article  Google Scholar 

  49. Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP . The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 2001; 79: 1033–1038.

    CAS  Article  Google Scholar 

  50. Mill J, Asherson P, Craig I, D'Souza UM . Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 2005; 6: 3.

    Article  Google Scholar 

  51. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M et al. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 2005; 46: 745–751.

    CAS  Google Scholar 

  52. Schott BH, Seidenbecher CI, Fenker DB, Lauer CJ, Bunzeck N, Bernstein HG et al. The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci 2006; 26: 1407–1417.

    CAS  Article  Google Scholar 

  53. Schultz W . Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997; 7: 191–197.

    CAS  Article  Google Scholar 

  54. Hahn J, Kullmann PH, Horn JP, Levitan ES . D2 autoreceptors chronically enhance dopamine neuron pacemaker activity. J Neurosci 2006; 26: 5240–5247.

    CAS  Article  Google Scholar 

  55. Jomphe C, Tiberi M, Trudeau LE . Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology 2006; 50: 595–605.

    CAS  Article  Google Scholar 

  56. Cohen MX, Young J, Baek JM, Kessler C, Ranganath C . Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res Cogn Brain Res 2005; 25: 851–861.

    CAS  Article  Google Scholar 

  57. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998; 3: 256–260.

    CAS  Article  Google Scholar 

  58. Sibley DR, Monsma Jr FJ, Shen Y . Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 1993; 35: 391–415.

    CAS  Article  Google Scholar 

  59. Jaber M, Robinson SW, Missale C, Caron MG . Dopamine receptors and brain function. Neuropharmacology 1996; 35: 1503–1519.

    CAS  Article  Google Scholar 

  60. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG . Dopamine receptors: from structure to function. Physiol Rev 1998; 78: 189–225.

    CAS  Article  Google Scholar 

  61. Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ . Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2-, and D4-like receptors. Neuroscience 1998; 83: 169–176.

    CAS  Article  Google Scholar 

  62. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315: 1267–1270.

    CAS  Article  Google Scholar 

  63. Weinshilboum RM, Otterness DM, Szumlanski CL . Methylation pharmacogenetics: catechol-O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 1999; 39: 19–52.

    CAS  Article  Google Scholar 

  64. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE . Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 2003; 23: 2008–2013.

    CAS  Article  Google Scholar 

  65. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8: 594–596.

    CAS  Article  Google Scholar 

  66. Goldberg TE, Weinberger DR . Genes and the parsing of cognitive processes. Trends Cogn Sci 2004; 8: 325–335.

    Article  Google Scholar 

  67. Ebstein RP, Zohar AH, Benjamin J, Belmaker RH . An update on molecular genetic studies of human personality traits. Appl Bioinformatics 2002; 1: 57–68.

    CAS  PubMed  Google Scholar 

  68. Hurd YL . Perspectives on current directions in the neurobiology of addiction disorders relevant to genetic risk factors. CNS Spectr 2006; 11: 855–862.

    Article  Google Scholar 

  69. Kreek MJ, Nielsen DA, LaForge KS . Genes associated with addiction: alcoholism, opiate, and cocaine addiction. Neuromolecular Med 2004; 5: 85–108.

    CAS  Article  Google Scholar 

  70. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS . Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 2005; 8: 1450–1457.

    CAS  Article  Google Scholar 

  71. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    CAS  Article  Google Scholar 

  72. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400–403.

    CAS  Article  Google Scholar 

  73. Vanyukov MM, Kirisci L, Tarter RE, Simkevitz HF, Kirillova GP, Maher BS et al. Liability to substance use disorders: 2. A measurement approach. Neurosci Biobehav Rev 2003; 27: 517–526.

    Article  Google Scholar 

  74. Vanyukov MM, Tarter RE, Kirisci L, Kirillova GP, Maher BS, Clark DB . Liability to substance use disorders: 1. Common mechanisms and manifestations. Neurosci Biobehav Rev 2003; 27: 507–515.

    Article  Google Scholar 

  75. Oswald LM, Wong DF, McCaul M, Zhou Y, Kuwabara H, Choi L et al. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 2005; 30: 821–832.

    CAS  Article  Google Scholar 

  76. Galvan A, Hare TA, Davidson M, Spicer J, Glover G, Casey BJ . The role of ventral frontostriatal circuitry in reward-based learning in humans. J Neurosci 2005; 25: 8650–8656.

    CAS  Article  Google Scholar 

  77. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D . Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12: 3683–3687.

    CAS  Article  Google Scholar 

  78. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 1999; 4: 290–296.

    CAS  Article  Google Scholar 

  79. Pohjalainen T, Nagren K, Syvalahti EK, Hietala J . The dopamine D2 receptor 5′-flanking variant, −141C Ins/Del, is not associated with reduced dopamine D2 receptor density in vivo. Pharmacogenetics 1999; 9: 505–509.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants PO1 HL040962 to SBM, K01 MH072837 to ARH, K01 MH074769 to EEF as well as NARSAD Young Investigator Awards to ARH and EEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Hariri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forbes, E., Brown, S., Kimak, M. et al. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 14, 60–70 (2009). https://doi.org/10.1038/sj.mp.4002086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002086

Keywords

  • dopamine
  • impulsivity
  • ventral striatum; fMRI
  • genetic polymorphisms
  • reward

Further reading

Search

Quick links