Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia

Abstract

Several lines of evidence, including expression analyses, brain imaging and genetic studies suggest that the integrity of myelin is disturbed in schizophrenia patients. In this study, we first reconstructed a pathway of 138 myelin-related genes, all involved in myelin structure, composition, development or maintenance. Then we performed a two-stage association analysis on these 138 genes using 771 single nucleotide polymorphisms (SNPs). Analysis of our data from 310 cases vs 880 controls demonstrated association of 10 SNPs from six genes. Specifically, we observed highly significant P-values for association in PIK4CA (observed P=6.1 × 10−6). These findings remained significant after Bonferroni correction for 771 tests. The PIK4CA gene is located in the chromosome 22q11 deletion syndrome region, which is of particular interest because it has been implicated in schizophrenia. We also report weak association of SNPs in PIK3C2G, FGF1, FGFR1, ARHGEF10 and PSAP (observed P0.01). Our approach—of screening genes involved in a particular pathway for association—resulted in identification of several, mostly novel, genes associated with the risk of developing schizophrenia in the Dutch population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  Google Scholar 

  2. Tsuang M . Schizophrenia: genes and environment. Biol Psychiatry 2000; 47: 210–220.

    Article  CAS  Google Scholar 

  3. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  Google Scholar 

  4. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  Google Scholar 

  5. Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad F . Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 1992; 49: 921–926.

    Article  CAS  Google Scholar 

  6. Buchanan RW, Vladar K, Barta PE, Pearlson GD . Structural evaluation of the prefrontal cortex in schizophrenia. Am J Psychiatry 1998; 155: 1049–1055.

    Article  CAS  Google Scholar 

  7. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia relationship to negative symptoms. Arch Gen Psychiatry 2000; 57: 471–480.

    Article  CAS  Google Scholar 

  8. Sigmundsson T, Suckling J, Maier M, Williams S, Bullmore E, Greenwood K et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001; 158: 234–243.

    Article  CAS  Google Scholar 

  9. Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS . Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000; 157: 416–421.

    Article  CAS  Google Scholar 

  10. van Haren NE, Picchioni MM, McDonald C, Marshall N, Davis N, Ribchester T et al. A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry 2004; 56: 454–461.

    Article  Google Scholar 

  11. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  Google Scholar 

  12. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  13. Schmitt A, Wilczek K, Blennow K, Maras A, Jatzko A, Petroianu G et al. Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol Psychiatry 2004; 56: 41–45.

    Article  CAS  Google Scholar 

  14. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  15. Pongrac J, Middleton FA, Lewis DA, Levitt P, Mirnics K . Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem Res 2002; 27: 1049–1063.

    Article  CAS  Google Scholar 

  16. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  Google Scholar 

  17. Lehrmann E, Hyde TM, Vawter MP, Becker KG, Kleinman JE, Freed WJ . The use of microarrays to characterize neuropsychiatric disorders: postmortem studies of substance abuse and schizophrenia. Curr Mol Med 2003; 3: 437–446.

    Article  CAS  Google Scholar 

  18. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  19. Abstracts of the XIth World Congress of Psychiatric Genetics. Quebec City, Canada, October 4–8, 2003. 1. Am J Med Genet B Neuropsychiatr Genet 2003; 122: 1–190.

  20. Bakker SC, Hoogendoorn MLC, Hendriks J, Verzijlbergen K, Caron S, Verduijn W et al. The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia. Genes Brain Behav 2007; 6: 113–119.

    Article  CAS  Google Scholar 

  21. KEGG pathway for the PI-signaling system. http://www.genome.jp/dbget-bin/show_pathway?hsa04070+5294.

  22. Skol AD, Scott LJ, Abecasis GR, Boehnke M . Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.

    Article  CAS  Google Scholar 

  23. Andreasen NC, Flaum M, Arndt S . The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 1992; 49: 615–623.

    Article  CAS  Google Scholar 

  24. Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC et al. Demonstrating stratification in a European American population. Nat Genet 2005; 37: 868–872.

    Article  CAS  Google Scholar 

  25. The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  26. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  27. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  28. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  29. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  30. Kahn HA, Sempos CT . Statistical Methods in Epidemiology. Oxford University Press: New York, 1989.

    Google Scholar 

  31. Pearce N . Analytical implications of epidemiological concepts of interaction. Int J Epidemiol 1989; 18: 976–980.

    Article  CAS  Google Scholar 

  32. Saito T, Stopkova P, Diaz L, Papolos DF, Boussemart L, Lachman HM . Polymorphism screening of PIK4CA: possible candidate gene for chromosome 22q11-linked psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 77–83.

    Article  Google Scholar 

  33. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  Google Scholar 

  34. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  Google Scholar 

  35. Sullivan PF . The genetics of schizophrenia. PLoS Med 2005; 2: e212.

    Article  Google Scholar 

  36. Murphy KC, Owen MJ . Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 2001; 179: 397–402.

    Article  CAS  Google Scholar 

  37. Saito T, Guan F, Papolos DF, Rajouria N, Fann CS, Lachman HM . Polymorphism in SNAP29 gene promoter region associated with schizophrenia. Mol Psychiatry 2001; 6: 193–201.

    Article  CAS  Google Scholar 

  38. Wonodi I, Hong LE, Avila MT, Buchanan RW, Carpenter Jr WT, Stine OC et al. Association between polymorphism of the SNAP29 gene promoter region and schizophrenia. Schizophr Res 2005; 78: 339–341.

    Article  Google Scholar 

  39. Rozycka M, Lu YJ, Brown RA, Lau MR, Shipley JM, Fry MJ . cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12. Genomics 1998; 54: 569–574.

    Article  CAS  Google Scholar 

  40. Misawa H, Ohtsubo M, Copeland NG, Gilbert DJ, Jenkins NA, Yoshimura A . Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun 1998; 244: 531–539.

    Article  CAS  Google Scholar 

  41. Tornieri K, Welshhans K, Geddis MS, Rehder V . Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase. Cell Motil Cytoskeleton 2006; 63: 173–192.

    Article  CAS  Google Scholar 

  42. Eberhard DA, Cooper CL, Low MG, Holz RW . Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem J 1990; 268: 15–25.

    Article  CAS  Google Scholar 

  43. Hinchliffe KA, Irvine RF, Divecha N . Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdInsP2 (4,5) levels in human platelets are controlled by translocation of PtdIns 4-P 5-kinase C to the cytoskeleton. EMBO J 1997; 15: 6516–6524.

    Article  Google Scholar 

  44. Cremona O, De Camilli P . Phosphoinositides in membrane traffic at the synapse. J Cell Sci 2001; 114 (Part 6): 1041–1052.

    CAS  PubMed  Google Scholar 

  45. Stopkova P, Vevera J, Paclt I, Zukov I, Papolos DF, Saito T et al. Screening of PIP5K2A promoter region for mutations in bipolar disorder and schizophrenia. Psychiatr Genet 2005; 15: 223–227.

    Article  Google Scholar 

  46. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  Google Scholar 

  47. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67: 269–275.

    Article  Google Scholar 

  48. Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD . The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 2007; 10: 537–545.

    Article  CAS  Google Scholar 

  49. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  Google Scholar 

  50. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  Google Scholar 

  51. Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese Island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9: 213–218.

    Article  CAS  Google Scholar 

  52. Elleder M, Jerabkova M, Befekadu A, Hrebicek M, Berna L, Ledvinova J et al. Prosaposin deficiency—a rarely diagnosed, rapidly progressing, neonatal neurovisceral lipid storage disease. Report of a further patient. Neuropediatrics 2005; 36: 171–180.

    Article  CAS  Google Scholar 

  53. Hiraiwa M, Campana WM, Mizisin AP, Mohiuddin L, O'Brien JS . Prosaposin: a myelinotrophic protein that promotes expression of myelin constituents and is secreted after nerve injury. Glia 1999; 26: 353–360.

    Article  CAS  Google Scholar 

  54. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet 2003; 73: 601–611.

    Article  CAS  Google Scholar 

  55. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet 2004; 75: 204–219.

    Article  CAS  Google Scholar 

  56. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psych 2006; 63: 18–24.

    Article  CAS  Google Scholar 

  57. Georgieva L, Moskvina V, Peirce T, Norton N, Bray NJ, Jones L et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci USA 2006; 103: 12469–12474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients for their participation in this study and Jackie Senior for critically reading the manuscript. This study was financially supported by the Makaria Foundation and the Dutch Brain Foundation (Hersenstichting).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Sinke.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungerius, B., Hoogendoorn, M., Bakker, S. et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry 13, 1060–1068 (2008). https://doi.org/10.1038/sj.mp.4002080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002080

Keywords

This article is cited by

Search

Quick links