Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Is it time to reassess the BDNF hypothesis of depression?

Abstract

The brain-derived neurotrophic factor (BDNF) hypothesis of depression postulates that a loss of BDNF is directly involved in the pathophysiology of depression, and that its restoration may underlie the therapeutic efficacy of antidepressant treatment. While this theory has received considerable experimental support, an increasing number of studies have generated evidence which is not only inconsistent, but also directly contradicts the hypothesis. This article provides a critical review of the clinical and preclinical studies which have been responsible for this controversy, outlining pharmacological, behavioural and genetic evidence which demonstrates the contrasting role of BDNF in regulating mood and antidepressant effects throughout the brain. I will also review key studies, both human and animal, which have investigated the association of a BDNF single-nucleotide polymorphism (Val66Met) with depression pathogenesis, and detail the number of inconsistencies which also afflict this novel area of BDNF research. The article will conclude by discussing why now is a critical time to reassess the original BDNF hypothesis of depression, and look towards the formation of new models that can provide a more valid account of the complex relationships between growth factors, mood disorders and their treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hindmarch I . Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry 2002; 17 (Suppl 3): 294–299.

    Article  PubMed  Google Scholar 

  2. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  PubMed  Google Scholar 

  3. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  4. Thoenen H . Neurotrophins and neuronal plasticity. Science 1995; 270: 593–598.

    Article  CAS  PubMed  Google Scholar 

  5. Kafitz KW, Rose CR, Thoenen H, Konnerth A . Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 1999; 401: 918–921.

    Article  CAS  PubMed  Google Scholar 

  6. Sapolsky RM . Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1996; 1: 1–19.

    Article  CAS  PubMed  Google Scholar 

  7. McEwen BS . The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000; 886: 172–189.

    Article  CAS  PubMed  Google Scholar 

  8. Duman RS . Depression: a case of neuronal life and death? Biol Psychiatry 2004; 56: 140–145.

    Article  PubMed  Google Scholar 

  9. Duman RS . Neurotrophic factors and regulation of mood: role of exercise, diet and metabolism. Neurobiol Aging 2005; 26 (Suppl 1): 88–93.

    Article  PubMed  CAS  Google Scholar 

  10. Altman J, Das GD . Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319–335.

    CAS  PubMed  Google Scholar 

  11. Gross CG . Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 2000; 1: 67–73.

    Article  CAS  PubMed  Google Scholar 

  12. Dranovsky A, Hen R . Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 2006; 59: 1136–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibanez CF . Neurotrophic factors: from structure–function studies to designing effective therapeutics. Trends Biotechnol 1995; 13: 217–227.

    Article  CAS  PubMed  Google Scholar 

  14. Fossati P, Radtchenko A, Boyer P . Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004; 14 (Suppl 5): S503–S510.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan J, Yankner BA . Apoptosis in the nervous system. Nature 2000; 407: 802–809.

    Article  CAS  PubMed  Google Scholar 

  16. Huang EJ, Reichardt LF . Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 2005; 12: 1329–1343.

    Article  CAS  PubMed  Google Scholar 

  18. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ . Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9: 519–525.

    Article  CAS  PubMed  Google Scholar 

  19. Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM . Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 2003; 54: 703–709.

    Article  CAS  PubMed  Google Scholar 

  20. Smith MA, Makino S, Kvetnansky R, Post RM . Effects of stress on neurotrophic factor expression in the rat brain. Ann NY Acad Sci 1995; 771: 234–239.

    Article  CAS  PubMed  Google Scholar 

  21. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS . 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E . Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997; 28: 103–110.

    Article  CAS  PubMed  Google Scholar 

  24. Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 2003; 121: 847–853.

    Article  CAS  PubMed  Google Scholar 

  25. Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A et al. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res 2004; 1025: 10–20.

    Article  CAS  PubMed  Google Scholar 

  26. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA . Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55: 708–714.

    Article  CAS  PubMed  Google Scholar 

  27. Rasmusson AM, Shi L, Duman R . Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 2002; 27: 133–142.

    Article  CAS  PubMed  Google Scholar 

  28. Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA . Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 2002; 7: 609–616.

    Article  CAS  PubMed  Google Scholar 

  29. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM . Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56: 131–137.

    Article  CAS  PubMed  Google Scholar 

  30. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoshaw BA, Malberg JE, Lucki I . Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 2005; 1037: 204–208.

    Article  CAS  PubMed  Google Scholar 

  32. Nibuya M, Nestler EJ, Duman RS . Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Russo-Neustadt A, Beard RC, Cotman CW . Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 1999; 21: 679–682.

    Article  CAS  PubMed  Google Scholar 

  34. Coppell AL, Pei Q, Zetterstrom TS . Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 2003; 44: 903–910.

    Article  CAS  PubMed  Google Scholar 

  35. Dias BG, Banerjee SB, Duman RS, Vaidya VA . Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 2003; 45: 553–563.

    Article  CAS  PubMed  Google Scholar 

  36. Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA . Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 2004; 77: 209–220.

    Article  CAS  PubMed  Google Scholar 

  37. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004; 128: 597–604.

    Article  CAS  PubMed  Google Scholar 

  38. Vinet J, Carra S, Blom JM, Brunello N, Barden N, Tascedda F . Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKalpha and CaMKKbeta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology 2004; 47: 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  39. Van Hoomissen JD, Chambliss HO, Holmes PV, Dishman RK . Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res 2003; 974: 228–235.

    Article  CAS  PubMed  Google Scholar 

  40. Xu H, Steven Richardson J, Li XM . Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 2003; 28: 53–62.

    Article  CAS  PubMed  Google Scholar 

  41. Smith MA, Zhang LX, Lyons WE, Mamounas LA . Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. NeuroReport 1997; 8: 1829–1834.

    Article  CAS  PubMed  Google Scholar 

  42. Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E et al. Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 2003; 23: 10841–10851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004; 24: 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller MB, Toschi N, Kresse AE, Post A, Keck ME . Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 2000; 23: 205–215.

    Article  CAS  PubMed  Google Scholar 

  45. Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW . Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996; 726: 49–56.

    Article  CAS  PubMed  Google Scholar 

  46. Adlard PA, Perreau VM, Engesser-Cesar C, Cotman CW . The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett 2004; 363: 43–48.

    Article  CAS  PubMed  Google Scholar 

  47. Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ . Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 2004; 29: 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  48. Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM . Chronic elevation of brain-derived neurotrophic factor by ampakines. J Pharmacol Exp Ther 2003; 307: 297–305.

    Article  CAS  PubMed  Google Scholar 

  49. Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E . The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 2001; 18: 247–258.

    Article  CAS  PubMed  Google Scholar 

  50. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  PubMed  Google Scholar 

  51. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–815.

    Article  CAS  PubMed  Google Scholar 

  52. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R . Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 2005; 136: 29–37.

    Article  CAS  PubMed  Google Scholar 

  53. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM . Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143–148.

    Article  CAS  PubMed  Google Scholar 

  54. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G . Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 2005; 57: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54: 70–75.

    Article  CAS  PubMed  Google Scholar 

  56. Aydemir O, Deveci A, Taneli F . The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 261–265.

    Article  CAS  PubMed  Google Scholar 

  57. Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology 2005; 51: 234–238.

    Article  CAS  PubMed  Google Scholar 

  58. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S . Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005; 255: 381–386.

    Article  PubMed  Google Scholar 

  59. Miro X, Perez-Torres S, Artigas F, Puigdomenech P, Palacios JM, Mengod G . Regulation of cAMP phosphodiesterase mRNAs expression in rat brain by acute and chronic fluoxetine treatment. An in situ hybridization study. Neuropharmacology 2002; 43: 1148–1157.

    Article  CAS  PubMed  Google Scholar 

  60. Branchi I, D’Andrea I, Sietzema J, Fiore M, Di Fausto V, Aloe L et al. Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and ‘depression’-like behavior. J Neurosci Res 2006; 83: 965–973.

    Article  CAS  PubMed  Google Scholar 

  61. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54: 994–1005.

    CAS  PubMed  Google Scholar 

  62. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

    Article  CAS  PubMed  Google Scholar 

  63. Kalueff AV, Avgustinovich DF, Kudryavtseva NN, Murphy DL . BDNF in anxiety and depression. Science 2006; 312: 1598–1599; author reply.

    Article  CAS  PubMed  Google Scholar 

  64. Liu QR, Lu L, Zhu XG, Gong JP, Shaham Y, Uhl GR . Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res 2006; 1067: 1–12.

    Article  CAS  PubMed  Google Scholar 

  65. Ernfors P, Lee KF, Jaenisch R . Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 1994; 368: 147–150.

    Article  CAS  PubMed  Google Scholar 

  66. MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT et al. Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 2001; 115: 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  67. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23: 349–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chourbaji S, Hellweg R, Brandis D, Zorner B, Zacher C, Lang UE et al. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 2004; 121: 28–36.

    Article  CAS  PubMed  Google Scholar 

  69. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001; 15: 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  70. Crawley JN . Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci 1996; 19: 181–182; discussion 188–189.

    Article  CAS  PubMed  Google Scholar 

  71. Inui A . Transgenic study of energy homeostasis equation: implications and confounding influences. FASEB J 2000; 14: 2158–2170.

    Article  CAS  PubMed  Google Scholar 

  72. Chan JP, Unger TJ, Byrnes J, Rios M . Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 2006; 142: 49–58.

    Article  CAS  PubMed  Google Scholar 

  73. Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 2007; 61: 187–197.

    Article  CAS  PubMed  Google Scholar 

  74. Kendler KS, Kuhn J, Prescott CA . The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression. Am J Psychiatry 2004; 161: 631–636.

    Article  PubMed  Google Scholar 

  75. Zorner B, Wolfer DP, Brandis D, Kretz O, Zacher C, Madani R et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than ‘depressive’. Biol Psychiatry 2003; 54: 972–982.

    Article  CAS  PubMed  Google Scholar 

  76. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS . A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007; 61: 661–670.

    CAS  PubMed  Google Scholar 

  77. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 2005; 29: 771–783.

    Article  CAS  PubMed  Google Scholar 

  78. Govindarajan A, Rao BS, Nair D, Trinh M, Mawjee N, Tonegawa S et al. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci USA 2006; 103: 13208–13213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  80. Fava M, Kendler KS . Major depressive disorder. Neuron 2000; 28: 335–341.

    Article  CAS  PubMed  Google Scholar 

  81. Nash MW, Huezo-Diaz P, Williamson RJ, Sterne A, Purcell S, Hoda F et al. Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships. Hum Mol Genet 2004; 13: 2173–2182.

    Article  CAS  PubMed  Google Scholar 

  82. Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jardine R, Martin NG, Henderson AS . Genetic covariation between neuroticism and the symptoms of anxiety and depression. Genet Epidemiol 1984; 1: 89–107.

    Article  CAS  PubMed  Google Scholar 

  84. Fanous A, Gardner CO, Prescott CA, Cancro R, Kendler KS . Neuroticism, major depression and gender: a population-based twin study. Psychol Med 2002; 32: 719–728.

    Article  CAS  PubMed  Google Scholar 

  85. Hettema JM, Neale MC, Myers JM, Prescott CA, Kendler KS . A population-based twin study of the relationship between neuroticism and internalizing disorders. Am J Psychiatry 2006; 163: 857–864.

    Article  PubMed  Google Scholar 

  86. Jang KL, Livesley WJ, Vernon PA . Heritability of the big five personality dimensions and their facets: a twin study. J Pers 1996; 64: 577–591.

    Article  CAS  PubMed  Google Scholar 

  87. Lake RI, Eaves LJ, Maes HH, Heath AC, Martin NG . Further evidence against the environmental transmission of individual differences in neuroticism from a collaborative study of 45 850 twins and relatives on two continents. Behav Genet 2000; 30: 223–233.

    Article  CAS  PubMed  Google Scholar 

  88. Lander ES, Schork NJ . Genetic dissection of complex traits. Science 1994; 265: 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  89. Stoltenberg SF, Burmeister M . Recent progress in psychiatric genetics–some hope but no hype. Hum Mol Genet 2000; 9: 927–935.

    Article  CAS  PubMed  Google Scholar 

  90. Duggan C, Sham P, Lee A, Minne C, Murray R . Neuroticism: a vulnerability marker for depression evidence from a family study. J Affect Disord 1995; 35: 139–143.

    Article  CAS  PubMed  Google Scholar 

  91. Flint J . The genetic basis of neuroticism. Neurosci Biobehav Rev 2004; 28: 307–316.

    Article  CAS  PubMed  Google Scholar 

  92. Sen S, Nesse RM, Stoltenberg SF, Li S, Gleiberman L, Chakravarti A et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 2003; 28: 397–401.

    Article  CAS  PubMed  Google Scholar 

  93. Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, Sander T et al. Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl) 2005; 180: 95–99.

    Article  CAS  Google Scholar 

  94. Hong CJ, Huo SJ, Yen FC, Tung CL, Pan GM, Tsai SJ . Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology 2003; 48: 186–189.

    Article  CAS  PubMed  Google Scholar 

  95. Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ . Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 19–22.

    Article  Google Scholar 

  96. Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS . Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 2006; 1118: 176–182.

    Article  CAS  PubMed  Google Scholar 

  97. Surtees PG, Wainwright NW, Willis-Owen SA, Sandhu MS, Luben R, Day NE et al. No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults. J Psychiatr Res 2007; 41: 404–409.

    Article  PubMed  Google Scholar 

  98. Willis-Owen SA, Fullerton J, Surtees PG, Wainwright NW, Miller S, Flint J . The Val66Met coding variant of the brain-derived neurotrophic factor (BDNF) gene does not contribute toward variation in the personality trait neuroticism. Biol Psychiatry 2005; 58: 738–742.

    Article  CAS  PubMed  Google Scholar 

  99. Munafo MR, Clark T, Flint J . Does measurement instrument moderate the association between the serotonin transporter gene and anxiety-related personality traits. A meta-analysis. Mol Psychiatry 2005; 10: 415–419.

    Article  CAS  PubMed  Google Scholar 

  100. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  101. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314: 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang X, Xu K, Hoberman J, Tian F, Marko AJ, Waheed JF et al. BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology 2005; 30: 1353–1361.

    Article  CAS  PubMed  Google Scholar 

  103. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM . The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging 2006; 27: 1834–1837.

    Article  CAS  PubMed  Google Scholar 

  104. Iga JI, Ueno SI, Yamauchi K, Numata S, Tayoshi-Shibuya S, Kinouchi S et al. The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with psychotic feature and suicidal behavior in Japanese major depressive patients. Am J Med Genet B Neuropsychiatr Genet 2006; 27: 1834–1837.

    Google Scholar 

  105. Castren E, Voikar V, Rantamaki T . Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7: 18–21.

    Article  CAS  PubMed  Google Scholar 

  106. Nestler EJ, Carlezon Jr WA . The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59: 1151–1159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Jonathan Flint for his invaluable scientific guidance and Kate Burnham for her essential editorial skills. This work was supported by a grant from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J O Groves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groves, J. Is it time to reassess the BDNF hypothesis of depression?. Mol Psychiatry 12, 1079–1088 (2007). https://doi.org/10.1038/sj.mp.4002075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002075

Keywords

This article is cited by

Search

Quick links