Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroanatomical and cellular substrates of hypergrooming induced by microinjection of oxytocin in central nucleus of amygdala, an experimental model of compulsive behavior

Abstract

Oxytocin (OT) is a neurosecretory nonapeptide synthesized in hypothalamic cells that project to the neurohypophysis as well as to widely distributed sites in the central nervous system. Central OT microinjections induce a variety of cognitive, sexual, reproductive, grooming and affiliative behaviors in animals. Obsessive-compulsive disorder (OCD) includes a range of cognitive and behavioral symptoms that bear some relationship with OT. Here, we study the neuroanatomical and cellular substrates of the hypergrooming induced by administration of OT in the central nucleus of amygdala (CeA). In this context, this hypergrooming is considered as a model of compulsive behavior. Our data suggest a link between the CeA and the hypothalamic grooming area (HGA). The HGA includes parts of the paraventricular nucleus and the dorsal hypothalamic area. Our data on colocalization of OT (immunohistochemistry for peptide), OT receptor (binding assay) and its retrogradely labeled cells after Fluoro-Gold injection in the CeA suggest that CeA and connections are important substrates of the circuit underlying this OT-dependent compulsive behavioral pattern.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Richard P, Moos F, Freund-Mercier MJ . Central effects of oxytocin. Physiol Rev 1991; 71: 331–370.

    Article  CAS  PubMed  Google Scholar 

  2. Sofroniew MV . Vasopressin and oxytocin in the mammalian brain and spinal-cord. Trends Neurosci 1983; 6: 467–472.

    Article  CAS  Google Scholar 

  3. Gimpl G, Fahrenholz F . The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81: 629–683.

    Article  CAS  PubMed  Google Scholar 

  4. Drago F, Pedersen CA, Caldwell JD, Prange Jr AJ . Oxytocin potently enhances novelty-induced grooming behavior in the rat. Brain Res 1986; 368: 287–295.

    Article  CAS  PubMed  Google Scholar 

  5. Wimersma Greidanus TB, Kroodsma JM, Pot ML, Stevens M, Maigret C . Neurohypophyseal hormones and excessive grooming behaviour. Eur J Pharmacol 1990; 187: 1–8.

    Article  PubMed  Google Scholar 

  6. Amico JA, Vollmer RR, Karam JR, Lee PR, Li X, Koenig JI et al. Centrally administered oxytocin elicits exaggerated grooming in oxytocin null mice. Pharmacol Biochem Behav 2004; 78: 333–339.

    Article  CAS  PubMed  Google Scholar 

  7. Numan M . Maternal behavior. In: Knobiol E, Neill JD (eds). Physiology of Reproduction. Raven Press: New York, 1994, pp 221–301.

    Google Scholar 

  8. Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM . CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci 2001; 21: 2546–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeVries AC, Young III WS, Nelson RJ . Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinol 1997; 9: 363–368.

    Article  CAS  PubMed  Google Scholar 

  10. Arletti R, Benelli A, Bertolini A . Influence of oxytocin on feeding behavior in the rat. Peptides 1989; 10: 89–93.

    Article  CAS  PubMed  Google Scholar 

  11. Bohus B, Kovacs GL, Dewied D . Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res 1978; 157: 414–417.

    Article  CAS  PubMed  Google Scholar 

  12. Arletti R, Bertolini A . Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 1987; 41: 1725–1730.

    Article  CAS  PubMed  Google Scholar 

  13. Uvnas-Moberg K, Ahlenius S, Hillegaart V, Alster P . High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol Biochem Behav 1994; 49: 101–106.

    Article  CAS  PubMed  Google Scholar 

  14. Windle RJ, Shanks N, Lightman SL, Ingram CD . Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 1997; 138: 2829–2834.

    Article  CAS  PubMed  Google Scholar 

  15. Uvnas-Moberg K, Bruzelius G, Alster P, Bileviciute I, Lundeberg T . Oxytocin increases and a specific oxytocin antagonist decreases pain threshold in male rats. Acta Physiol Scand 1992; 144: 487–488.

    Article  CAS  PubMed  Google Scholar 

  16. Miguel EC, Shavitt RG . Neurobiologia do transtorno obsessivo-compulsivo. In: Miguel EC (ed). Transtornos do espectro obsessivo-compulsivo. Guanabara: Rio de Janeiro, 1996, pp 51–71.

    Google Scholar 

  17. Ansseau M, Legros JJ, Mormont C, Cerfontaine JL, Papart P, Geenen V et al. Intranasal oxytocin in obsessive-compulsive disorder. Psychoneuroendocrinology 1987; 12: 231–236.

    Article  CAS  PubMed  Google Scholar 

  18. den Boer JA, Westenberg HG . Oxytocin in obsessive-compulsive disorder. Peptides 1992; 13: 1083–1085.

    Article  CAS  PubMed  Google Scholar 

  19. Salzberg AD, Swedo SE . Oxytocin and vasopressin in obsessive-compulsive disorder. Am J Psychiatry 1992; 149: 713–714.

    CAS  PubMed  Google Scholar 

  20. Epperson CN, McDougle CJ, Price LH . Intranasal oxytocin in obsessive-compulsive disorder. Biol Psychiatry 1996; 40: 547–549.

    Article  CAS  PubMed  Google Scholar 

  21. Charles G, Guillanme R, Schittecatte M, Pholien P, Van Wettere JP, Wilmotte J . Oxytocin in the treatment of obsessive-compulsive disorder: a report on two cases. Psychiatry Psychobiol 1989; 4: 111–115.

    Google Scholar 

  22. Insel TR . Oxytocin – a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 1992; 17: 3–35.

    Article  CAS  PubMed  Google Scholar 

  23. Engelmann M, Wotjak CT, Ebner K, Landgraf R . Behavioural impact of intraseptally released vasopressin and oxytocin in rats. Exp Physiol 2000; 85 (Spec no.): 125S–130S.

    Article  CAS  PubMed  Google Scholar 

  24. Leckman JF, Goodman WK, North WG, Chappell PB, Price LH, Pauls DL et al. Elevated cerebrospinal fluid levels of oxytocin in obsessive-compulsive disorder. Comparison with Tourette's syndrome and healthy controls. Arch Gen Psychiatry 1994; 51: 782–792.

    Article  CAS  PubMed  Google Scholar 

  25. Altemus M, Jacobson KR, Debellis M, Kling M, Pigott T, Murphy DL et al. Normal CSF oxytocin and NPY levels in OCD. Biol Psychiatry 1999; 45: 931–933.

    Article  CAS  PubMed  Google Scholar 

  26. Korff S, Harvey BH . Animal models of obsessive-compulsive disorder: rationale to understanding psychobiology and pharmacology. Psychiatr Clin North Am 2006; 29: 371–390.

    Article  PubMed  Google Scholar 

  27. Berridge KC, Aldridge JW, Houchard KR, Zhuang X . Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive-compulsive disorder and Tourette's. BMC Biol 2005; 3: 4–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gati CDC, Garcia-Cairasco N . Indução de hypergrooming por meio de microinjeçao de ocitocina na amígdala central: um possível modelo de transtorno obsessivo-compulsivo? Abstracts from XVII Reunião Anual da Federação de Sociedades de Biologia Experimental, 2002; Braz J Med Biol Res.

  29. Spruijt BM, van Hooff JA, Gispen WH . Ethology and neurobiology of grooming behavior. Physiol Rev 1992; 72: 825–852.

    Article  CAS  PubMed  Google Scholar 

  30. Sachs BD . The development of grooming and its expression in adult animals. Ann NY Acad Sci 1988; 525: 1–17.

    Article  CAS  PubMed  Google Scholar 

  31. Drago F, Bohus B . Hyperprolactinemia-induced excessive grooming in the rat: time-course and element analysis. Behav Neural Biol 1981; 33: 117–122.

    Article  CAS  PubMed  Google Scholar 

  32. Miyamoto M, Nagawa Y . Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats. Eur J Pharmacol 1977; 44: 143–152.

    Article  CAS  PubMed  Google Scholar 

  33. Wimersma Greidanus TB, van de BF, de Bruijckere LM, Pabst PH, Ruesink RW, Hulshof RL et al. Comparison of bombesin-, ACTH-, and beta-endorphin-induced grooming. Antagonism by haloperidol, naloxone, and neurotensin. Ann NY Acad Sci 1988; 525: 219–227.

    Article  PubMed  Google Scholar 

  34. Lammers JH, Meelis W, Kruk MR, van der Poel AM . Hypothalamic substrates for brain stimulation-induced grooming, digging and circling in the rat. Brain Res 1987; 418: 1–19.

    Article  CAS  PubMed  Google Scholar 

  35. Palkovits M, Young III WS, Kovacs K, Toth Z, Makara GB . Alterations in corticotropin-releasing hormone gene expression of central amygdaloid neurons following long-term paraventricular lesions and adrenalectomy. Neuroscience 1998; 85: 135–147.

    Article  CAS  PubMed  Google Scholar 

  36. Roeling TA, Veening JG, Peters JP, Vermelis ME, Nieuwenhuys R . Efferent connections of the hypothalamic ‘grooming area’ in the rat. Neuroscience 1993; 56: 199–225.

    Article  CAS  PubMed  Google Scholar 

  37. Tribollet E, Dreifuss JJ . Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience 1981; 6: 1315–1328.

    Article  CAS  PubMed  Google Scholar 

  38. Rasia-Filho AA, Londero RG, Achaval M . Functional activities of the amygdala: an overview. J Psychiatry Neurosci 2000; 25: 14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis M . Neurobiology of fear responses: the role of the amygdala. J Neuropsychiatry Clin Neurosci 1997; 9: 382–402.

    Article  CAS  PubMed  Google Scholar 

  40. Roozendaal B, Koolhaas JM, Bohus B . The role of the central amygdala in stress and adaption. Acta Physiol Scand Suppl 1997; 640: 51–54.

    CAS  PubMed  Google Scholar 

  41. LeDoux JE . Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  CAS  PubMed  Google Scholar 

  42. Terenzi MG, Ingram CD . Oxytocin-induced excitation of neurones in the rat central and medial amygdaloid nuclei. Neuroscience 2005; 134: 345–354.

    Article  CAS  PubMed  Google Scholar 

  43. Huber D, Veinante P, Stoop R . Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005; 308: 245–248.

    Article  CAS  PubMed  Google Scholar 

  44. van den Heuvel OA, Veltman DJ, Groenewegen HJ, Dolan RJ, Cath DC, Boellaard R et al. Amygdala activity in obsessive-compulsive disorder with contamination fear: a study with oxygen-15 water positron emission tomography. Psychiatry Res 2004; 132: 225–237.

    Article  PubMed  Google Scholar 

  45. Swanson LW . The hypothalamus. In: Bjorklund A, Hokfelt T, Swanson LW (eds). Handbook of Chemical Neuroanatomy. Elsevier: Amsterdam, 1987, pp 1–124.

    Google Scholar 

  46. Lammers JH, Kruk MR, Meelis W, van der Poel AM . Hypothalamic substrates for brain stimulation-induced patterns of locomotion and escape jumps in the rat. Brain Res 1988; 449: 294–310.

    Article  CAS  PubMed  Google Scholar 

  47. Jurgens U . The hypothalamus and behavioral patterns. Prog Brain Res 1974; 41: 445–463.

    Article  CAS  PubMed  Google Scholar 

  48. Koolhaas JM . Hypothalamically induced intraspecific aggressive behaviour in the rat. Exp Brain Res 1978; 32: 365–375.

    Article  CAS  PubMed  Google Scholar 

  49. Elands J, Barberis C, Jard S, Tribollet E, Dreifuss JJ, Bankowski K et al. 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT: a selective oxytocin receptor ligand. Eur J Pharmacol 1988; 147: 197–207.

    Article  CAS  PubMed  Google Scholar 

  50. Pedersen CA, Boccia ML . Oxytocin antagonism alters rat dams' oral grooming and upright posturing over pups. Physiol Behav 2003; 80: 233–241.

    Article  CAS  PubMed  Google Scholar 

  51. Gispen WH, Wiegant VM, Greven HM, de Wied D . The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: structure-activity studies. Life Sci 1975; 17: 645–652.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Cairasco N, Doretto MC, Prado RP, Jorge BP, Terra VC, Oliveira JA . New insights into behavioral evaluation of audiogenic seizures. A comparison of two ethological methods. Behav Brain Res 1992; 48: 49–56.

    Article  CAS  PubMed  Google Scholar 

  53. Campbell KM, Rohland RM, McGrath MJ, Satoskar SD, Burton FH . Detecting subtle differences in behavior using waveform display analysis. Physiol Behav 1998; 64: 83–91.

    Article  CAS  PubMed  Google Scholar 

  54. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press: San Diego, CA, 2005.

    Google Scholar 

  55. Draper NR, Smith H . Applied Regression Analysis. John Wiley & Sons Inc.: New York, 1981.

    Google Scholar 

  56. Breslow NE, Clayton DG . Approximate inference in generalized linear mixed models. J Am Stat Assoc 1993; 88: 9–25.

    Google Scholar 

  57. Garcia-Cairasco N, Rossetti F, Oliveira JA, Furtado MA . Neuroethological study of status epilepticus induced by systemic pilocarpine in Wistar audiogenic rats (WAR strain). Epilepsy Behav 2004; 5: 455–463.

    Article  PubMed  Google Scholar 

  58. Kita I, Yoshida Y, Nishino S . An activation of parvocellular oxytocinergic neurons in the paraventricular nucleus in oxytocin-induced yawning and penile erection. Neurosci Res 2006; 54: 269–275.

    Article  CAS  PubMed  Google Scholar 

  59. Argiolas A, Melis MR . The neuropharmacology of yawning. Eur J Pharmacol 1998; 343: 1–16.

    Article  CAS  PubMed  Google Scholar 

  60. McCarthy MM, McDonald CH, Brooks PJ, Goldman D . An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol Behav 1996; 60: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  61. Hashiguchi H, Ye SH, Morris M, Alexander N . Single and repeated environmental stress: effect on plasma oxytocin, corticosterone, catecholamines, and behavior. Physiol Behav 1997; 61: 731–736.

    Article  CAS  PubMed  Google Scholar 

  62. Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, Engelmann M . Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 1998; 85: 1209–1222.

    Article  CAS  PubMed  Google Scholar 

  63. Green EJ, Isaacson RL, Dunn AJ, Lanthorn TH . Naloxone and haloperidol reduce grooming occurring as an aftereffect of novelty. Behav Neural Biol 1979; 27: 546–551.

    Article  CAS  PubMed  Google Scholar 

  64. del Angel-Meza AR, Gonzalez-Burgos I, Olvera-Cortes E, Feria-Velasco A . Chronic tryptophan restriction disrupts grooming chain completion in the rat. Physiol Behav 1996; 59: 1099–1102.

    Article  CAS  PubMed  Google Scholar 

  65. Drago F, Contarino A, Busa L . The expression of neuropeptide-induced excessive grooming behavior in dopamine D1 and D2 receptor-deficient mice. Eur J Pharmacol 1999; 365: 125–131.

    Article  CAS  PubMed  Google Scholar 

  66. Graf M . 5-HT2c receptor activation induces grooming behaviour in rats: possible correlations with obsessive-compulsive disorder. Neuropsychopharmacol Hung 2006; 8: 23–28.

    PubMed  Google Scholar 

  67. Drago F, Caldwell JD, Pedersen CA, Continella G, Scapagnini U, Prange Jr AJ . Dopamine neurotransmission in the nucleus accumbens may be involved in oxytocin-enhanced grooming behavior of the rat. Pharmacol Biochem Behav 1986; 24: 1185–1188.

    Article  CAS  PubMed  Google Scholar 

  68. Scalzitti JM, Cervera LS, Smith C, Hensler JG . Serotonin2A receptor modulation of D1 dopamine receptor-mediated grooming behavior. Pharmacol Biochem Behav 1999; 63: 279–284.

    Article  CAS  PubMed  Google Scholar 

  69. Wouterlood FG, Groenewegen HJ . Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L-filled neuronal somata, dendrites, axons and axon terminals. Brain Res 1985; 326: 188–191.

    Article  CAS  PubMed  Google Scholar 

  70. Gray TS, Carney ME, Magnuson DJ . Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 1989; 50: 433–446.

    Article  CAS  PubMed  Google Scholar 

  71. Moos FC, Ingram CD . Electrical recordings of magnocellular supraoptic and paraventricular neurons displaying both oxytocin- and vasopressin-related activity. Brain Res 1995; 669: 309–314.

    Article  CAS  PubMed  Google Scholar 

  72. Freund-Mercier MJ, Richard P . Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J Physiol 1984; 352: 447–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Van Erp AM, Kruk MR, Veening JG, Roeling TA, Meelis W . Neuronal substrate of electrically induced grooming in the PVH of the rat: involvement of oxytocinergic systems? Physiol Behav 1995; 57: 881–885.

    Article  CAS  PubMed  Google Scholar 

  74. Berntson GG, Jang JF, Ronca AE . Brain-stem systems and grooming behaviors. Ann NY Acad Sci 1988; 525: 350–362.

    Article  CAS  PubMed  Google Scholar 

  75. Berridge KC . Progressive degradation of serial grooming chains by descending decerebration. Behav Brain Res 1989; 33: 241–253.

    Article  CAS  PubMed  Google Scholar 

  76. Leckman JF, Goodman WK, North WG, Chappell PB, Price LH, Pauls DL et al. The role of central oxytocin in obsessive-compulsive disorder and related normal behavior. Psychoneuroendocrinology 1994; 19: 723–749.

    Article  CAS  PubMed  Google Scholar 

  77. McDougle CJ, Barr LC, Goodman WK, Price LH . Possible role of neuropeptides in obsessive-compulsive disorder. Psychoneuroendocrinology 1999; 24: 1–24.

    Article  CAS  PubMed  Google Scholar 

  78. Hastings MH . Neuroendocrine rhythms. Pharmacol Ther 1991; 50: 35–71.

    Article  CAS  PubMed  Google Scholar 

  79. Yamashita H, Okuya S, Inenaga K, Kasai M, Uesugi S, Kannan H et al. Oxytocin predominantly excites putative oxytocin neurons in the rat supraoptic nucleus in vitro. Brain Res 1987; 416: 364–368.

    Article  CAS  PubMed  Google Scholar 

  80. Dollard J, Miller NE . Personality and Psychoterapy. McGraw-Hill: New York, 1950.

    Google Scholar 

  81. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 2005; 25: 11489–11493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ . Functional anatomy of obsessive-compulsive phenomena. Br J Psychiatry 1994; 164: 459–468.

    Article  CAS  PubMed  Google Scholar 

  83. Rachman S, de Silva P . Abnormal and normal obsessions. Behav Res Ther 1978; 16: 233–248.

    Article  CAS  PubMed  Google Scholar 

  84. Cath DC, Spinhoven P, Hoogduin CA, Landman AD, van Woerkom TC, van de Wetering BJ et al. Repetitive behaviors in Tourette's syndrome and OCD with and without tics: what are the differences? Psychiatry Res 2001; 101: 171–185.

    Article  CAS  PubMed  Google Scholar 

  85. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U . Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 2003; 54: 1389–1398.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the people who contributed ideas, suggestions as well as technical advice to improve the data collection and their interpretation. We especially thank Emílio AC Barros and Edson Z Martinez, from Center for Quantitative Methods (CEMEQ – Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo), Gabriel M Arisi, Artur Fernandes, Diego de CC Borragini, Flávio D Vecchio, from LNNE, Márcia Graeff and Rubens F de Melo. This work was financially supported by FAPESP, PRONEX, CAPES, CNPq and FAEPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Garcia-Cairasco.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marroni, S., Nakano, F., Gati, C. et al. Neuroanatomical and cellular substrates of hypergrooming induced by microinjection of oxytocin in central nucleus of amygdala, an experimental model of compulsive behavior. Mol Psychiatry 12, 1103–1117 (2007). https://doi.org/10.1038/sj.mp.4002015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002015

Keywords

This article is cited by

Search

Quick links