Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls

Abstract

The catechol-O-methyltransferase (COMT) Val158Met polymorphism is hypothesized to affect executive function in patient and control populations. Studies inconsistently report better performance on the Wisconsin Card Sort Test (WCST) in individuals with one or more Met alleles. We conducted a meta-analysis of studies published until August 2006 that reported WCST perseverative errors from healthy volunteers or patients with schizophrenia-spectrum disorders. Twelve studies met inclusion criteria (total n=1910) providing 10 samples each of patients and controls. In healthy controls, individuals with the Met/Met genotype performed better than those with the Val/Val genotype (d=0.29; 95% confidence interval (CI) 0.02–0.55; P=0.03), but this was not supported in the patient sample (d=−0.07; 95% CI −0.40 to 0.26; P=0.68). Post hoc analyses suggested that Val and Met alleles are codominant in their effects on cognition. Effect size was greater in studies published at an earlier date and may also be larger in non-Caucasian samples. Gender did not affect the results. There was no evidence of publication bias. We conclude that there is small but significant relationship between Val158Met genotype and executive function in healthy individuals but not in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berg EA . A sample objective test for measuring flexibility in thinking. J Gen Psychol 1948; 39: 15–22.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–124.

    Article  CAS  PubMed  Google Scholar 

  7. Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A et al. New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 2004; 161: 1110–1112.

    Article  PubMed  Google Scholar 

  8. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  9. Minzenberg MJ, Xu K, Mitropoulou V, Harvey PD, Finch T, Flory JD et al. Catechol-O-methyltransferase Val158Met genotype variation is associated with prefrontal-dependent task performance in schizotypal personality disorder patients and comparison groups. Psychiatr Genet 2006; 16: 117–124.

    Article  PubMed  Google Scholar 

  10. Tsai SJ, Yu YW, Chen TJ, Chen JY, Liou YJ, Chen MC et al. Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neurosci Lett 2003; 338: 123–126.

    Article  CAS  PubMed  Google Scholar 

  11. Joober R, Gauthier J, Lal S, Bloom D, Lalonde P, Rouleau G et al. Catechol-O-methyltransferase Val-108/158-Met gene variants associated with performance on the Wisconsin Card Sorting Test. Arch Gen Psychiatry 2002; 59: 662–663.

    Article  PubMed  Google Scholar 

  12. Palmatier MA, Kang AM, Kidd KK . Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557–567.

    Article  CAS  PubMed  Google Scholar 

  13. Barnett JH, Heron J, Ring SM, Golding J, Goldman D, Xu K et al. Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. Am J Psychiatry 2007; 164: 142–149.

    Article  PubMed  Google Scholar 

  14. Rybakowski JK, Borkowska A, Czerski PM, Dmitrzak-Weglarz M, Skibinska M, Kapelski P et al. Performance on the Wisconsin Card Sorting Test in schizophrenia and genes of dopaminergic inactivation (COMT, DAT, NET). Psychiatry Res 2006; 143: 13–19.

    Article  CAS  PubMed  Google Scholar 

  15. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 2005; 57: 139–144.

    Article  CAS  PubMed  Google Scholar 

  16. Munafo MR, Bowes L, Clark TG, Flint J . Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry 2005; 10: 765–770.

    Article  CAS  PubMed  Google Scholar 

  17. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  18. Anokhin AP, Heath AC, Ralano A . Genetic influences on frontal brain function: WCST performance in twins. Neuroreport 2003; 14: 1975–1978.

    Article  PubMed  Google Scholar 

  19. Wolf LE, Cornblatt BA, Roberts SA, Shapiro BM, Erlenmeyer-Kimling L . Wisconsin Card Sorting deficits in the offspring of schizophrenics in the New York High-Risk Project. Schizophr Res 2002; 57: 173.

    Article  PubMed  Google Scholar 

  20. Taerk E, Grizenko N, Ben Amor L, Lageix P, Mbekou V, Deguzman R et al. Catechol-O-methyltransferase (COMT) Val108/158 Met polymorphism does not modulate executive function in children with ADHD. BMC Med Genet 2004; 5: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lipsky RH, Sparling MB, Ryan LM, Xu K, Salazar AM, Goldman D et al. Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. J Neuropsychiatry Clin Neurosci 2005; 17: 465–471.

    Article  CAS  PubMed  Google Scholar 

  22. Kates WR, Antshel KM, Abdulsabur N, Colgan D, Funke B, Fremont W et al. A gender-moderated effect of a functional COMT polymorphism on prefrontal brain morphology and function in velo-cardio-facial syndrome (22q11.2 deletion syndrome). Am J Med Genet B Neuropsychiatr Genet 2006; 141: 274–280.

    Article  Google Scholar 

  23. Shashi V, Keshavan MS, Howard TD, Berry MN, Basehore MJ, Lewandowski E et al. Cognitive correlates of a functional COMT polymorphism in children with 22q11.2 deletion syndrome. Clin Genet 2006; 69: 234–238.

    Article  CAS  PubMed  Google Scholar 

  24. Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H et al. The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 2006; 129: 399–410.

    Article  PubMed  Google Scholar 

  25. Munafo MR, Flint J . Meta-analysis of genetic association studies. Trends Genet 2004; 20: 439–444.

    Article  CAS  PubMed  Google Scholar 

  26. Galderisi S, Maj M, Kirkpatrick B, Piccardi P, Mucci A, Invernizzi G et al. Catechol-O-methyltransferase Val158Met polymorphism in schizophrenia: associations with cognitive and motor impairment. Neuropsychobiology 2005; 52: 83–89.

    Article  CAS  PubMed  Google Scholar 

  27. Szoke A, Schurhoff F, Meary A, Mathieu F, Chevalier F, Trandafir A et al. Lack of influence of COMT and NET genes variants on executive functions in schizophrenic and bipolar patients, their first-degree relatives and controls. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 504–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. Br Med J 1997; 315: 629–634.

    Article  CAS  Google Scholar 

  29. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. Br Med J 2003; 327: 557–560.

    Article  Google Scholar 

  30. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni X et al. Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002; 52: 701–707.

    Article  CAS  PubMed  Google Scholar 

  31. Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM et al. Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry 2005; 58: 901–907.

    Article  CAS  PubMed  Google Scholar 

  32. Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC . Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 2005; 10 229: 287–298.

    Article  CAS  Google Scholar 

  33. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG . Replication validity of genetic association studies. Nat Genet 2001; 29: 306–309.

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    CAS  PubMed  Google Scholar 

  35. Nolan KA, Bilder RM, Lachman HM, Volavka J . Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. Am J Psychiatry 2004; 161: 359–361.

    Article  PubMed  Google Scholar 

  36. Bilder RM, Volavka J, Lachman HM, Grace AA . The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 2004; 29: 1943–1961.

    Article  CAS  PubMed  Google Scholar 

  37. Grace AA . Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991; 41: 1–24.

    Article  CAS  PubMed  Google Scholar 

  38. Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ . The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neurosci Lett 2005; 385: 1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Krabbendam L, Isusi P, Galdos P, Echevarria E, Bilbao JR, Martin-Pagola A et al. Associations between COMTVal158Met polymorphism and cognition: direct or indirect effects? Eur Psychiatry 2006; 21: 338–342.

    Article  PubMed  Google Scholar 

  40. Wahlstrom D, White T, Hooper CJ, Vrshek-Schallhorn S, Oetting WS, Brott MJ et al. Variations in the catechol O-methyltransferase polymorphism and prefrontally guided behaviors in adolescents. Biol Psychiatry 2006 (in press). doi:10.1016/j.biopsych.2006.05.045.

  41. McIntosh AM, Baig BJ, Hall J, Job D, Whalley HC, Lymer GK et al. Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol Psychiatry 2006 (in press). doi:10.1016/j.biopsych.2006.05.020.

  42. Zinkstok J, Schmitz N, van Amelsvoort T, de Win M, van den Brink W, Baas F et al. The COMT val158met polymorphism and brain morphometry in healthy young adults. Neurosci Lett 2006; 405: 34–39.

    Article  CAS  PubMed  Google Scholar 

  43. Bishop SJ, Cohen JD, Fossella J, Casey BJ, Farah MJ . COMT genotype influences prefrontal response to emotional distraction. Cogn Affect Behav Neurosci 2006; 6: 62–70.

    Article  PubMed  Google Scholar 

  44. Mata I, Arranz MJ, Staddon S, Lopez-Ilundain JM, Tabares-Seisdedos R, Murray RM . The high-activity Val allele of the catechol-O-methyltransferase gene predicts greater cognitive deterioration in patients with psychosis. Psychiatr Genet 2006; 16: 213–216.

    Article  PubMed  Google Scholar 

  45. Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006; 11: 867–877, 797.

    Article  CAS  PubMed  Google Scholar 

  46. Floderus Y, Ross SB, Wetterberg L . Erythrocyte catechol-O-methyltransferase activity in a Swedish population. Clin Genet 1981; 19: 389–392.

    Article  CAS  PubMed  Google Scholar 

  47. Goldman-Rakic PS, Muly III EC, Williams GV . D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000; 31: 295–301.

    Article  CAS  PubMed  Google Scholar 

  48. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003; 100: 6186–6191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW et al. Assessing the molecular genetics of attention networks. BMC Neurosci 2002; 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim SJ, Kim YS, Kim SY, Lee HS, Kim CH . An association study of catechol-O-methyltransferase and monoamine oxidase A polymorphisms and personality traits in Koreans. Neurosci Lett 2006; 401: 154–158.

    Article  CAS  PubMed  Google Scholar 

  52. De Luca V, Tharmalingam S, Sicard T, Kennedy JL . Gene-gene interaction between MAOA and COMT in suicidal behavior. Neurosci Lett 2005; 383: 151–154.

    Article  CAS  PubMed  Google Scholar 

  53. Zammit S, Jones G, Jones SJ, Norton N, Sanders RD, Milham C et al. Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 128: 19–20.

    Article  Google Scholar 

  54. Bertolino A, Blasi G, Latorre V, Rubino V, Rampino A, Sinibaldi L et al. Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci 2006; 26: 3918–3922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan RC, Chen RY, Chen EY, Hui TC, Cheung EF, Cheung HK et al. The differential clinical and neurocognitive profiles of COMT SNP rs165599 genotypes in schizophrenia. J Int Neuropsychol Soc 2005; 11: 202–204.

    Article  CAS  PubMed  Google Scholar 

  56. Craddock N, Owen MJ, O’Donovan MC . The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 2006; 11: 446–458.

    Article  CAS  PubMed  Google Scholar 

  57. Snitz BE, Macdonald III AW, Carter CS . Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull 2006; 32: 179–194.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Keri S, Janka Z . Critical evaluation of cognitive dysfunctions as endophenotypes of schizophrenia. Acta Psychiatr Scand 2004; 110: 83–91.

    Article  CAS  PubMed  Google Scholar 

  59. Savitz JB, Solms M, Ramesar RS . Neurocognitive function as an endophenotype for genetic studies of bipolar affective disorder. Neuromolecular Med 2005; 7: 275–286.

    Article  CAS  PubMed  Google Scholar 

  60. Doyle AE, Faraone SV, Seidman LJ, Willcutt EG, Nigg JT, Waldman ID et al. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? J Child Psychol Psychiatry 2005; 46: 774–803.

    Article  PubMed  Google Scholar 

  61. Aron AR, Poldrack RA . The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1285–1292.

    Article  PubMed  Google Scholar 

  62. Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ . The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 2005; 29: 399–419.

    Article  CAS  PubMed  Google Scholar 

  63. Bedwell JS, Kamath V, Baksh E . Comparison of three computer-administered cognitive tasks as putative endophenotypes of schizophrenia. Schizophr Res 2006; 88: 36–46.

    Article  PubMed  Google Scholar 

  64. Szoke A, Schurhoff F, Golmard JL, Alter C, Roy I, Meary A et al. Familial resemblance for executive functions in families of schizophrenic and bipolar patients. Psychiatry Res 2006; 144: 131–138.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Tim Croudace for statistical, and Professor David C Rubinsztein for genetic, advice. We are grateful to all the researchers who made extra data available to us to enable its inclusion in the meta-analysis. This study was in part completed at the Cambridge Behavioural and Clinical Neuroscience Institute, jointly funded by Medical Research Council (MRC) and Wellcome Trust. JHB is supported by the Stanley Medical Research Institute and UM by a MRC Pathfinder award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Barnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, J., Jones, P., Robbins, T. et al. Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol Psychiatry 12, 502–509 (2007). https://doi.org/10.1038/sj.mp.4001973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001973

Keywords

This article is cited by

Search

Quick links