Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

β2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort

Abstract

The β2-adrenergic receptor is part of the catecholamine system, and variants at two polymorphic sites in the gene coding for the receptor (ADRB2) confer increased activity. Overstimulation of this receptor may alter brain development, and has been linked to autism in non-identical twins. The objective of this study was to determine whether alleles in ADRB2 are associated with diagnosis of autism in the Autism Genetic Resource Exchange (AGRE) population. Three hundred and thirty-one independent autism case–parent trios were included in the analysis. Subjects were genotyped at activity-related polymorphisms rs1042713 (codon 16) and rs1042714 (codon 27). Association between autism and genotypes at each polymorphic site was tested using genotype-based transmission disequilibrium tests, and effect modification by family and pregnancy characteristics was evaluated. Sensitivity to designation of the proband in each family was assessed by performing 1000 repeats of the analysis selecting affected children randomly. A statistically significant OR of 1.66 for the Glu27 homozygous genotype was observed. Increased associations with this genotype were observed among a subset of Autism Diagnostic Observation Schedule confirmed cases and a subset reporting experience of pregnancy-related stressors. In conclusion, the Glu27 allele of the ADRB2 gene may confer increased risk of autism and shows increased strength with exposure to pregnancy related stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arndt TL, Stodgell CJ, Rodier PM . The teratology of autism. Int J Dev Neurosci 2005; 23: 189–199.

    Article  CAS  Google Scholar 

  2. Weiss ER, Maness P, Lauder JM . Why do neurotransmitters act like growth factors? Perspect Dev Neurobiol 1998; 5: 323–335.

    CAS  PubMed  Google Scholar 

  3. Schlumpf M, Bruinink A, Lichtensteiger W, Cortes R, Palacios JM, Pazos A . Beta-adrenergic binding sites in fetal rat central nervous system and pineal gland: their relation to other receptor sites. Dev Pharmacol Ther 1987; 10: 422–435.

    Article  CAS  Google Scholar 

  4. Slotkin TA, Lau C, Seidler FJ . Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol Appl Pharmacol 1994; 129: 223–234.

    Article  CAS  Google Scholar 

  5. Garofolo MC, Seidler FJ, Cousins MM, Tate CA, Qiao D, Slotkin TA . Developmental toxicity of terbutaline: critical periods for sex-selective effects on macromolecules and DNA synthesis in rat brain, heart, and liver. Brain Res Bull 2003; 59: 319–329.

    Article  CAS  Google Scholar 

  6. Rhodes MC, Seidler FJ, Abdel-Rahman A, Tate CA, Nyska A, Rincavage HL et al. Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J Pharmacol Exp Ther 2004; 308: 529–537.

    Article  CAS  Google Scholar 

  7. Slotkin TA, Baker FE, Dobbins SS, Eylers JP, Lappi SE, Seidler FJ . Prenatal terbutaline exposure in the rat: selective effects on development of noradrenergic projections to cerebellum. Brain Res Bull 1989; 23: 263–265.

    Article  CAS  Google Scholar 

  8. Slotkin TA, Kudlacz EM, Lappi SE, Tayyeb MI, Seidler FJ . Fetal terbutaline exposure causes selective postnatal increases in cerebellar alpha-adrenergic receptor binding. Life Sci 1990; 47: 2051–2057.

    Article  CAS  Google Scholar 

  9. Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ et al. Beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 2005; 20: 876–884.

    Article  Google Scholar 

  10. Slotkin TA, Auman JT, Seidler FJ . Ontogenesis of beta-adrenoceptor signaling: implications for perinatal physiology and for fetal effects of tocolytic drugs. J Pharmacol Exp Ther 2003; 306: 1–7.

    Article  CAS  Google Scholar 

  11. Cooper GM . Cell signaling. In: Sinauer AD (ed) The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Inc.: Sunderland MA, USA, 2000, pp 523–570.

    Google Scholar 

  12. Slotkin TA, Oliver CA, Seidler FJ . Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res 2005; 157: 172–180.

    Article  CAS  Google Scholar 

  13. Slotkin TA, Tate CA, Cousins MM, Seidler FJ . Beta-adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res 2001; 131: 113–125.

    Article  CAS  Google Scholar 

  14. Stein HM, Oyama K, Sapien R, Chappell BA, Padbury JF . Prolonged beta-agonist infusion does not induce desensitization or down-regulation of beta-adrenergic receptors in newborn sheep. Pediatr Res 1992; 31: 462–467.

    Article  CAS  Google Scholar 

  15. Hadders-Algra M, Touwen BC, Huisjes HJ . Long-term follow-up of children prenatally exposed to ritodrine. Br J Obstet Gynaecol 1986; 93: 156–161.

    Article  CAS  Google Scholar 

  16. Pitzer M, Schmidt MH, Esser G, Laucht M . Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry Hum Dev 2001; 31: 165–182.

    Article  CAS  Google Scholar 

  17. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS et al. cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 1987; 84: 46–50.

    Article  CAS  Google Scholar 

  18. Leineweber K, Brodde OE . Beta2-adrenoceptor polymorphisms: relation between in vitro and in vivo phenotypes. Life Sci 2004; 74: 2803–2814.

    Article  CAS  Google Scholar 

  19. Reihsaus E, Innis M, MacIntyre N, Liggett SB . Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334–339.

    Article  CAS  Google Scholar 

  20. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP et al. Beta2-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension 2000; 36: 371–375.

    Article  CAS  Google Scholar 

  21. Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW, Stein CM et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 2001; 345: 1030–1035.

    Article  CAS  Google Scholar 

  22. Trombetta IC, Batalha LT, Rondon MU, Laterza MC, Frazzatto E, Alves MJ et al. Gly16+Glu27 beta2-adrenoceptor polymorphisms cause increased forearm blood flow responses to mental stress and handgrip in humans. J Appl Physiol 2005; 98: 787–794.

    Article  CAS  Google Scholar 

  23. Garovic VD, Joyner MJ, Dietz NM, Boerwinkle E, Turner ST . Beta2-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol 2003; 546: 583–589.

    Article  CAS  Google Scholar 

  24. Bruck H, Leineweber K, Buscher R, Ulrich A, Radke J, Insel PA et al. The Gln27Glu beta2-adrenoceptor polymorphism slows the onset of desensitization of cardiac functional responses in vivo. Pharmacogenetics 2003; 13: 59–66.

    Article  CAS  Google Scholar 

  25. Bruck H, Leineweber K, Beilfuss A, Weber M, Heusch G, Philipp T et al. Genotype-dependent time course of lymphocyte beta2-adrenergic receptor down-regulation. Clin Pharmacol Ther 2003; 74: 255–263.

    Article  CAS  Google Scholar 

  26. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE et al. Timing of prenatal stressors and autism. J Autism Dev Disord 2005; 35: 471–478.

    Article  CAS  Google Scholar 

  27. Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH et al. Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 2004; 75: 1117–1123.

    Article  CAS  Google Scholar 

  28. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions [letter]. Am J Hum Genet 2001; 69: 463–466.

    Article  CAS  Google Scholar 

  29. Lord C, Rutter M, Le CA . Autism diagnostic interview – revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  Google Scholar 

  30. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  Google Scholar 

  31. Holmes TH, Rahe RH . The social readjustment rating scale. J Psychosom Res 1967; 11: 213–218.

    Article  CAS  Google Scholar 

  32. Mander AP . Haplotype analysis in population-based association studies. STATA J 2001; 1: 58–75.

    Article  Google Scholar 

  33. Schaid DJ . Relative-risk regression models using cases and their parents. Genet Epidemiol 1995; 12: 813–818.

    Article  CAS  Google Scholar 

  34. Schaid DJ . Likelihoods and TDT for the case-parents design. Genet Epidemiol 1999; 16: 250–260.

    Article  CAS  Google Scholar 

  35. Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA et al. Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol 2002; 22: 1–11.

    Article  Google Scholar 

  36. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  Google Scholar 

  37. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 2001; 9: 301–306.

    Article  CAS  Google Scholar 

  38. Belfer I, Buzas B, Evans C, Hipp H, Phillips G, Taubman J et al. Haplotype structure of the beta adrenergic receptor genes in US Caucasians and African Americans. Eur J Hum Genet 2005; 13: 341–351.

    Article  CAS  Google Scholar 

  39. Dallongeville J, Helbecque N, Cottel D, Amouyel P, Meirhaeghe A . The Gly16 → Arg16 and Gln27 → Glu27 polymorphisms of beta2-adrenergic receptor are associated with metabolic syndrome in men. J Clin Endocrinol Metab 2003; 88: 4862–4866.

    Article  CAS  Google Scholar 

  40. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D et al. Systematic review and meta-analysis of the association between beta2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 2005; 162: 201–211.

    Article  Google Scholar 

  41. Gu C, Ma YC, Benjamin J, Littman D, Chao MV, Huang XY . Apoptotic signaling through the beta-adrenergic receptor. A new Gs effector pathway. J Biol Chem 2000; 275: 20726–20733.

    Article  CAS  Google Scholar 

  42. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S . Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 1999; 100: 305–311.

    Article  CAS  Google Scholar 

  43. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH . Beta-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol 1998; 275: H961–H968.

    CAS  PubMed  Google Scholar 

  44. Slotkin TA, Seidler FJ . Anomalous regulation of beta-adrenoceptor signaling in brain regions of the newborn rat. Brain Res 2006; 1077: 54–58.

    Article  CAS  Google Scholar 

  45. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  Google Scholar 

  46. DiPietro JA, Ghera MM, Costigan K, Hawkins M . Measuring the ups and downs of pregnancy stress. J Psychosom Obstet Gynaecol 2004; 25: 189–201.

    Article  CAS  Google Scholar 

  47. Wadhwa PD . Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology 2005; 30: 724–743.

    Article  CAS  Google Scholar 

  48. Hogue CJ, Bremner JD . Stress model for research into preterm delivery among black women. Am J Obstet Gynecol 2005; 192: S47–S55.

    Article  Google Scholar 

  49. Rich-Edwards JW, Grizzard TA . Psychosocial stress and neuroendocrine mechanisms in preterm delivery. Am J Obstet Gynecol 2005; 192: S30–S35.

    Article  CAS  Google Scholar 

  50. Mulder EJ, Robles de Medina PG, Huizink AC, Van den Bergh BR, Buitelaar JK, Visser GH . Prenatal maternal stress: effects on pregnancy and the (unborn) child. Early Hum Dev 2002; 70: 3–14.

    Article  CAS  Google Scholar 

  51. Doh K, Sziller I, Vardhana S, Kovacs E, Papp Z, Witkin SS . Beta2-adrenergic receptor gene polymorphisms and pregnancy outcome. J Perinat Med 2004; 32: 413–417.

    Article  CAS  Google Scholar 

  52. Landau R, Xie HG, Dishy V, Stein CM, Wood AJ, Emala CW et al. Beta2-adrenergic receptor genotype and preterm delivery. Am J Obstet Gynecol 2002; 187: 1294–1298.

    Article  CAS  Google Scholar 

  53. Ozkur M, Dogulu F, Ozkur A, Gokmen B, Inaloz SS, Aynacioglu AS . Association of the Gln27Glu polymorphism of the beta2-adrenergic receptor with preterm labor. Int J Gynaecol Obstet 2002; 77: 209–215.

    Article  CAS  Google Scholar 

  54. Gillberg C, Gillberg IC . Infantile autism: a total population study of reduced optimality in the pre-, peri-, and neonatal period. J Autism Dev Disord 1983; 13: 153–166.

    Article  CAS  Google Scholar 

  55. Hultman CM, Sparen P, Cnattingius S . Perinatal risk factors for infantile autism. Epidemiology 2002; 13: 417–423.

    Article  Google Scholar 

  56. Larsson HJ, Eaton WW, Madsen KM, Vestergaard M, Olesen AV, Agerbo E et al. Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol 2005; 161: 916–925.

    Article  Google Scholar 

  57. Cryan E, Byrne M, O'Donovan A, O'Callaghan E . Brief report: a case-control study of obstetric complications and later autistic disorder. J Autism Dev Disord 1996; 26: 453–460.

    Article  CAS  Google Scholar 

  58. Glasson EJ, Bower C, Petterson B, de Klerk N, Chaney G, Hallmayer JF . Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry 2004; 61: 618–627.

    Article  Google Scholar 

  59. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    Article  CAS  Google Scholar 

  60. Maxwell TJ, Ameyaw MM, Pritchard S, Thornton N, Folayan G, Githang'a J et al. Beta-2 adrenergic receptor genotypes and haplotypes in different ethnic groups. Int J Mol Med 2005; 16: 573–580.

    CAS  PubMed  Google Scholar 

  61. Rothman KJ . No adjustments are needed for multiple comparisons. Epidemiology 1990; 1: 43–46.

    Article  CAS  Google Scholar 

  62. Nelson KB, Dambrosia JM, Iovannisci DM, Cheng S, Grether JK, Lammer E . Genetic polymorphisms and cerebral palsy in very preterm infants. Pediatr Res 2005; 57: 494–499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium* and the participating AGRE families. The AGRE is a program of Cure Autism Now and is supported, in part, by Grant MH64547 from the National Institute of Mental Health to Daniel H Geschwind (PI). This research was also supported by cooperative agreement U10CCU320408 from the National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention and a National Alliance for Autism Research (NAAR) Pre-Doctoral Fellowship. *The AGRE Consortium: Dan Geschwind, MD, PhD, UCLA, Los Angeles, CA, USA; Maja Bucan, PhD, University of Pennsylvania, Philadelphia, PA, USA; W Ted Brown, MD, PhD, FACMG, NYS, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Rita M Cantor, PhD, UCLA School of Medicine, Los Angeles, CA, USA; John N Constantino, MD, Washington University School of Medicine, St Louis, MO, USA; T Conrad Gilliam, PhD, University of Chicago, Chicago, IL, USA; Martha Herbert, MD, PhD, Harvard Medical School, Boston, MA, USA; Clara Lajonchere, PhD, Cure Autism Now, Los Angeles, CA, USA; David H Ledbetter, PhD, Emory University, Atlanta, GA, USA; Christa Lese-Martin, PhD, Emory University, Atlanta, GA, USA; Janet Miller, JD, PhD, Cure Autism Now, Los Angeles, CA, USA; Stanley F Nelson, MD, UCLA School of Medicine, Los Angeles, CA, USA; Gerard D Schellenberg, PhD, University of Washington, Seattle, WA, USA; Carol A Samango-Sprouse, EdD, George Washington University, Washington, DC, USA; Sarah Spence, MD, PhD, UCLA, Los Angeles, CA, USA; Matthew State, MD, PhD, Yale University, New Haven, CT, USA; Rudolph E Tanzi, PhD, Massachusetts General Hospital, Boston, MA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Newschaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheslack-Postava, K., Fallin, M., Avramopoulos, D. et al. β2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry 12, 283–291 (2007). https://doi.org/10.1038/sj.mp.4001940

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001940

Keywords

This article is cited by

Search

Quick links