Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Two isoforms of GABAA receptor β2 subunit with different electrophysiological properties: differential expression and genotypical correlations in schizophrenia

Abstract

Single nucleotide polymorphisms in type A γ-aminobutyric acid (GABAA) receptor β2 subunit gene (GABRB2) were found to be associated with schizophrenia in Chinese, German, Japanese and Portuguese. To explore potential functional consequences of these DNA sequence polymorphisms, this study examined the expression and electrophysiological properties of two alternatively spliced products of GABRB2 along with genotypical disease association analysis. Real-time quantitative polymerase chain reaction, performed with a cohort of 31 schizophrenics and 31 controls of US population, showed 21.7% reduction in the expression of the long isoform β2L, 13.4% in the short isoform β2S and 15.8% in the sum of the two isoforms β2T in postmortem schizophrenic brain. Furthermore, two independent mRNA quantitation methods showed that the relative expression of the long over the short isoforms was significantly decreased, suggesting the occurrence of altered splicing, in schizophrenia. In male schizophrenics, the heterozygous genotypes of rs1876071 (T/C) and rs1876072 (A/G) were correlated with reduced expression of β2L, β2S and β2T, and the heterozygous of rs2546620 (A/G) and homozygous-minor of rs1876071 (C/C) and rs1876072 (G/G) were correlated with reduced expression of β2T. Significant correlations of expression levels with different alleles and haplotypes were also indicated by quantitative trait analysis. Recombinant GABAA receptors expressed in HEK293 human cells containing β2L underwent a steeper current rundown upon repetitive GABA activation than receptors containing β2S. The results thus revealed genotype-dependent expression of the alternatively spliced isoforms of GABAA receptor β2 subunit, giving rise to electrophysiological consequences that could play an important role in the pathogenesis mechanism of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lo WS, Lau CF, Xuan Z, Chan CF, Feng GY, He L et al. Association of SNPs and haplotypes in GABAA receptor β2 gene with schizophrenia. Mol Psychiatry 2004; 9: 603–608.

    Article  CAS  Google Scholar 

  2. Petryshen TL, Middleton FA, Tahl AR, Rockwell GN, Purcell S, Aldinger KA et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005; 10: 1074–1088.

    Article  CAS  Google Scholar 

  3. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  Google Scholar 

  4. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 96–101.

    Article  Google Scholar 

  5. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  Google Scholar 

  6. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  Google Scholar 

  7. Bray NJ, Preece A, Williams NM, Moskvina V, Buckland PR, Owen MJ et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet 2005; 14: 1947–1954.

    Article  CAS  Google Scholar 

  8. De Luca V, Voineskos D, Shinkai T, Wong G, Kennedy JL . Untranslated region haplotype in dysbindin gene: analysis in schizophrenia. J Neural Transm 2005; 112: 1263–1267.

    Article  CAS  Google Scholar 

  9. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  Google Scholar 

  10. Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H et al. The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 2006; 129: 399–410.

    Article  Google Scholar 

  11. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  Google Scholar 

  12. Zhang F, St Clair D, Liu X, Sun X, Sham PC, Crombie C et al. Association analysis of the RGS4 gene in Han Chinese and Scottish populations with schizophrenia. Genes Brain Behav 2005; 4: 444–448.

    Article  CAS  Google Scholar 

  13. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  Google Scholar 

  14. Korostishevsky M, Kremer I, Kaganovich M, Cholostoy A, Murad I, Muhaheed M et al. Transmission disequilibrium and haplotype analyses of the G72/G30 locus: suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 91–95.

    Article  Google Scholar 

  15. Krebs MO, Sautel F, Bourdel MC, Sokoloff P, Schwartz JC, Olie JP et al. Dopamine D3 receptor gene variants and substance abuse in schizophrenia. Mol Psychiatry 1998; 3: 337–341.

    Article  CAS  Google Scholar 

  16. Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH . Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res Mol Brain Res 2004; 121: 60–69.

    Article  CAS  Google Scholar 

  17. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  Google Scholar 

  18. Yu Z, Chen J, Shi H, Stoeber G, Tsang S-Y, Xue H . Analysis of GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping. Clin Biochem 2006; 39: 210–218.

    Article  CAS  Google Scholar 

  19. Liu J, Shi Y, Tang W, Guo T, Li D, Yang Y et al. Positive association of the human GABAA receptor β2 subunit gene haplotype with schizophrenia in the Chinese Han population. Biochem Biophys Res Commun 2005; 334: 817–823.

    Article  CAS  Google Scholar 

  20. Lo W-S, Harano M, Gawlik M, Yu Z, Chen J, Pun FW et al. GABRB2 association with schizophrenia: commonalities and differences between ethnic groups and clinical subtypes. Biol Psychiatry 2006, in press.

  21. Whiting PJ . The GABAA receptor gene family: new targets for therapeutic intervention. Neurochem Int 1999; 34: 387–390.

    Article  CAS  Google Scholar 

  22. Korpi ER, Sinkkonen ST . GABAA receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 2006; 109: 12–32.

    Article  CAS  Google Scholar 

  23. Whiting PJ, Bonnert TP, McKernan RM, Farrar S, Le Bourdelles B, Heavens RP et al. Molecular and functional diversity of the expanding GABAA receptor gene family. Ann N Y Acad Sci 1999; 868: 645–653.

    Article  CAS  Google Scholar 

  24. McKinley DD, Lennon DJ, Carter DB . Cloning, sequence analysis and expression of two forms of mRNA coding for the human β2 subunit of the GABAA receptor. Brain Res Mol Brain Res 1995; 28: 175–179.

    Article  CAS  Google Scholar 

  25. Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T . Immunohistochemical and immunoblot study of GABAA β1 and β2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Res 2004; 50: 77–84.

    Article  CAS  Google Scholar 

  26. Dean B, Hussain T, Hayes W, Scarr E, Kitsoulis S, Hill C et al. Changes in serotonin2A and GABAA receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem 1999; 72: 1593–1599.

    Article  CAS  Google Scholar 

  27. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  28. Huntsman MM, Tran BV, Potkin SG, Bunney Jr WE, Jones EG . Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the γ-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998; 95: 15066–15071.

    Article  CAS  Google Scholar 

  29. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  Google Scholar 

  30. Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T . GABAA receptor γ subunits in the prefrontal cortex of patients with schizophrenia and bipolar disorder. Neuroreport 2004; 15: 1809–1812.

    Article  CAS  Google Scholar 

  31. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney Jr WE et al. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 1995; 5: 550–560.

    Article  CAS  Google Scholar 

  32. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  Google Scholar 

  33. Weinberger DR, Berman KF, Suddath R, Torrey EF . Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149: 890–897.

    Article  CAS  Google Scholar 

  34. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley Foundation brain collection and Neuropathology Consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  35. Nickerson DA, Tobe VO, Taylor SL . PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 1997; 25: 2745–2751.

    Article  CAS  Google Scholar 

  36. Torres JM, Ortega E . Quantitation of mRNA levels of steroid 5α-reductase isozymes: a method that combines one-step reverse transcription-polymerase chain reaction and separation by capillary electrophoresis. Electrophoresis 2004; 25: 415–420.

    Article  CAS  Google Scholar 

  37. Brace N, Kemp R, Snelgar R, NetLibrary Inc. SPSS for Psychologists: A Guide to Data Analysis Using SPSS for Windows (versions 8, 9 and 10). L. Erlbaum Associates: Mahwah, NJ, 2000.

    Google Scholar 

  38. Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S et al. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 2006; 15: 1245–1258.

    Article  CAS  Google Scholar 

  39. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  40. De Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  41. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  42. Felsenstein J . Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368–376.

    Article  CAS  Google Scholar 

  43. Greenfield Jr LJ, Zaman SH, Sutherland ML, Lummis SC, Niemeyer MI, Barnard EA et al. Mutation of the GABAA receptor M1 transmembrane proline increases GABA affinity and reduces barbiturate enhancement. Neuropharmacology 2002; 42: 502–521.

    Article  CAS  Google Scholar 

  44. Huang RQ, Dillon GH . Maintenance of recombinant type A γ-aminobutyric acid receptor function: role of protein tyrosine phosphorylation and calcineurin. J Pharmacol Exp Ther 1998; 286: 243–255.

    CAS  PubMed  Google Scholar 

  45. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: research0034.1–research0034.11.

    Article  Google Scholar 

  46. Chen QX, Stelzer A, Kay AR, Wong RK . GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 1990; 420: 207–221.

    Article  CAS  Google Scholar 

  47. Palma E, Ragozzino DA, Di Angelantonio S, Spinelli G, Trettel F, Martinez-Torres A et al. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain. Proc Natl Acad Sci USA 2004; 101: 10183–10188.

    Article  CAS  Google Scholar 

  48. Moss SJ, Gorrie GH, Amato A, Smart TG . Modulation of GABAA receptors by tyrosine phosphorylation. Nature 1995; 377: 344–348.

    Article  CAS  Google Scholar 

  49. Ragozzino D, Palma E, Di Angelantonio S, Amici M, Mascia A, Arcella A et al. Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. Proc Natl Acad Sci USA 2005; 102: 15219–15223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor J Tze-Fei Wong, Dr Jun Xia, Dr Guangqin Zhang, Ms Peggy Lee, Ms Sandy Leung, Ms Herix Sze and Mr Edwin Wong for valuable advice and assistance. We thank the Stanley Medical Research Foundation for donation of postmortem brain RNA and DNA samples, and both the Research Grants Council and Innovation and Technology Fund of the Government of Hong Kong for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Xue.

Additional information

Electronic database information

Stanley Medical Research Institute Homepage: http://www.stanleyresearch.org/programs/brain_collection.asp

BLASTN at the National Center for Biotechnology Information: http://www.ncbi.nlm.nih.gov/BLAST/

Protocol for Genemapper software: http://docs.appliedbiosystems.com/pebiodocs/04362816.pdf

Protocol for Stratagene Mx3000P™ Real-time PCR machine: http://www.stratagene.com/tradeshows/Introduction_to_Quantitative_PCR_web.pdf

Website for Genepop V3.4: http://wbiomed.curtin.edu.au/genepop/

Website for Tagger program: http://www.broad.mit.edu/mpg/tagger/

Website for UNPHASED version 2.404: http://www.hgmp.mrc.ac.uk/fdudbrid/software/unphased/

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Xu, Z., Chen, J. et al. Two isoforms of GABAA receptor β2 subunit with different electrophysiological properties: differential expression and genotypical correlations in schizophrenia. Mol Psychiatry 11, 1092–1105 (2006). https://doi.org/10.1038/sj.mp.4001899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001899

Keywords

This article is cited by

Search

Quick links