Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine

Abstract

The significant proportion of depressed patients that are resistant to monoaminergic drug therapy and the slow onset of therapeutic effects of the selective serotonin reuptake inhibitors (SSRIs)/serotonin/noradrenaline reuptake inhibitors (SNRIs) are two major reasons for the sustained search for new antidepressants. In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset antidepressant. Each of these antidepressant treatments was applied with the same regimen known to have clinical efficacy: 2 days of ECT (four sessions per day), 24 h of SD, and 14 days of daily treatment of FLX, respectively. Transcriptional changes were evaluated on RNA extracted from seven different brain regions using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization or autoradiography for selected genes. The major findings of the study are:

  1. 1

    The transcriptional changes induced by SD, ECT and SSRI display a regionally specific distribution distinct to each treatment.

  2. 2

    The fast-onset, short-lived antidepressant treatments ECT and SD evoked transcriptional changes primarily in the catecholaminergic system, whereas the slow-onset antidepressant FLX treatment evoked transcriptional changes in the serotonergic system.

  3. 3

    ECT and SD affect in a similar manner the same brain regions, primarily the locus coeruleus, whereas the effects of FLX were primarily in the dorsal raphe and hypothalamus, suggesting that both different regions and pathways account for fast onset but short lasting effects as compared to slow-onset but long-lasting effects. However, the similarity between effects of ECT and SD is somewhat confounded by the fact that the two treatments appear to regulate a number of transcripts in an opposite manner.

  4. 4

    Multiple transcripts (e.g. brain-derived neurotrophic factor (BDNF), serum/glucocorticoid-regulated kinase (Sgk1)), whose level was reported to be affected by antidepressants or behavioral manipulations, were also found to be regulated by the treatments used in the present study. Several novel findings of transcriptional regulation upon one, two or all three treatments were made, for the latter we highlight homer, erg2, HSP27, the proto oncogene ret, sulfotransferase family 1A (Sult1a1), glycerol 3-phosphate dehydrogenase (GPD3), the orphan receptor G protein-coupled receptor 88 (GPR88) and a large number of expressed sequence tags (ESTs).

  5. 5

    Transcripts encoding proteins involved in synaptic plasticity in the hippocampus were strongly affected by ECT and SD, but not by FLX.

The novel transcripts, concomitantly regulated by several antidepressant treatments, may represent novel targets for fast onset, long-duration antidepressants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Slattery DA, Hudson AL, Nutt DJ . Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol 2004; 18: 1–21.

    Article  CAS  PubMed  Google Scholar 

  2. Owens MJ . Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65 (Suppl 4): 5–10.

    CAS  PubMed  Google Scholar 

  3. Booij L, Van der Does AJ, Riedel WJ . Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry 2003; 8: 951–973.

    Article  CAS  PubMed  Google Scholar 

  4. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V . ‘Serotonin depression’ – a biochemical subgroup within the affective disorders? Science 1976; 191: 478–480.

    Article  CAS  PubMed  Google Scholar 

  5. Briley M, Moret C . Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 1993; 16: 387–400.

    Article  CAS  PubMed  Google Scholar 

  6. Sargent PA, Williamson DJ, Cowen PJ . Brain 5-HT neurotransmission during paroxetine treatment. Br J Psychiatry 1998; 172: 49–52.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson C . Onset of action of antidepressants: results of different analyses. Hum Psychopharmacol 2002; 17 (Suppl 1): S27–S32.

    Article  CAS  PubMed  Google Scholar 

  8. Miller FE . Strategies for the rapid treatment of depression. Hum Psychopharmacol 2001; 16: 125–132.

    Article  PubMed  Google Scholar 

  9. Segman RH, Shapira B, Gorfine M, Lerer B . Onset and time course of antidepressant action: psychopharmacological implications of a controlled trial of electroconvulsive therapy. Psychopharmacology (Berl) 1995; 119: 440–448.

    Article  CAS  Google Scholar 

  10. D'Sa C, Duman RS . Antidepressants and neuroplasticity. Bipolar Disord 2002; 4: 183–194.

    Article  CAS  PubMed  Google Scholar 

  11. Duman RS . Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004; 5: 11–25.

    Article  CAS  PubMed  Google Scholar 

  12. Hellsten J, Wennstrom M, Mohapel P, Ekdahl CT, Bengzon J, Tingstrom A . Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 2002; 16: 283–290.

    Article  PubMed  Google Scholar 

  13. Jacobsen JP, Mork A . The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 2004; 1024: 183–192.

    Article  CAS  PubMed  Google Scholar 

  14. Perera TD, Lisanby SH . Neurogenesis and depression. J Psychiatr Pract 2000; 6: 322–333.

    CAS  PubMed  Google Scholar 

  15. Blier P, de Montigny C . Current advances and trends in the treatment of depression (see comment). Trends Pharmacol Sci 1994; 15: 220–226.

    Article  CAS  PubMed  Google Scholar 

  16. Fahndrich E . Effect of sleep deprivation as a predictor of treatment response to antidepressant medication. Acta Psychiatr Scand 1983; 68: 341–344.

    Article  CAS  PubMed  Google Scholar 

  17. Giedke H, Schwarzler F . Therapeutic use of sleep deprivation in depression. Sleep Med Rev 2002; 6: 361–377.

    Article  PubMed  Google Scholar 

  18. Giedke H, Wormstall H, Haffner HT . Therapeutic sleep deprivation in depressives, restricted to the two nocturnal hours between 3:00 and 5:00. Prog Neuropsychopharmacol Biol Psychiatry 1990; 14: 37–47.

    Article  CAS  PubMed  Google Scholar 

  19. Greenhalgh J, Knight C, Hind D, Beverley C, Walters S . Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mAnia-4: systematic reviews and economic modelling studies. Health Technol Assess (Winchester, England) 2005; 9: 1–156.

    CAS  Google Scholar 

  20. Roose SP, Nobler M . ECT and onset of action. J Clin Psychiatry 2001; 62 (Suppl 4): 24–26; discussion 37–40.

    PubMed  Google Scholar 

  21. Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004; 24: 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markianos M, Hatzimanolis J, Lykouras L . Serotonergic and dopaminergic neuroendocrine responses of male depressive patients before and after a therapeutic ECT course. Eur Arch Psychiatry Clin Neurosci 2002; 252: 172–176.

    Article  PubMed  Google Scholar 

  23. Sattin A . The role of TRH and related peptides in the mechanism of action of ECT. J ECT 1999; 15: 76–92.

    Article  CAS  PubMed  Google Scholar 

  24. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101: 15506–15511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rausch JL, Gillespie CF, Fei Y, Hobby HM, Stoming T, Ganapathy V et al. Antidepressant effects on kinase gene expression patterns in rat brain. Neurosci Lett 2002; 334: 91–94.

    Article  CAS  PubMed  Google Scholar 

  26. Niculescu A . Genomic studies of mood disorders – the brain as a muscle? Genome Biol 2005; 6: 215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelsoe J, Niculescu III A . Finding genes for bipolar disorder in the functional genomics era: from convergent functional genomics to phenomics and back. CNS Spectr 2002; 7: 223–226.

    Google Scholar 

  28. Paxinos G, Watson C. In: Press A (ed). The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press: New York, 1998.

  29. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  30. Kung MP, Frederick D, Mu M, Zhuang ZP, Kung HF . 4-(2′-Methoxy-phenyl)-1-[2′-(n-2″-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J Pharmacol Exp Therap 1995; 272: 429–437.

    CAS  Google Scholar 

  31. Barbui C, Hotopf M, Garattini S . Fluoxetine dose and outcome in antidepressant drug trials. Eur J Clin Pharmacol 2002; 58: 379–386.

    Article  CAS  PubMed  Google Scholar 

  32. Calil HM . Fluoxetine: a suitable long-term treatment. J Clin Psychiatry 2001; 62 (Suppl 22): 24–29.

    CAS  PubMed  Google Scholar 

  33. Rossi A, Barraco A, Donda P . Fluoxetine: a review on evidence based medicine. Ann Gen Hosp Psychiatry 2004; 3: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bunney WE, Bunney BG, Vawter MP, Tomita H, Li J, Evans SJ et al. Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am J Psychiatry 2003; 160: 657–666.

    Article  PubMed  Google Scholar 

  35. Chardenot P, Roubert C, Galiegue S, Casellas P, Le Fur G, Soubrie P et al. Expression profile and up-regulation of PRAX-1 mRNA by antidepressant treatment in the rat brain. Mol Pharmacol 2002; 62: 1314–1320.

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Nicolini V, McGinty JF . Gene expression profile from the striatum of amphetamine-treated rats: a cDNA array and in situ hybridization histochemical study. Gene Expression Patterns 2002; 1: 193–198.

    Article  CAS  PubMed  Google Scholar 

  37. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    Article  CAS  PubMed  Google Scholar 

  38. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 2005; 29: 771–783.

    Article  CAS  PubMed  Google Scholar 

  39. Mucignat-Caretta C, Bondi M, Caretta A . Animal models of depression: olfactory lesions affect amygdala, subventricular zone, and aggression. Neurobiol Dis 2004; 16: 386–395.

    Article  CAS  PubMed  Google Scholar 

  40. Murata S, Yoshiara T, Lim CR, Sugino M, Kogure M, Ohnuki T et al. Psychophysiological stress-regulated gene expression in mice. FEBS Lett 2005; 579: 2137–2142.

    Article  CAS  PubMed  Google Scholar 

  41. Overstreet DH, Keeney A, Hogg S . Antidepressant effects of citalopram and CRF receptor antagonist CP-154 526 in a rat model of depression. Eur J Pharmacol 2004; 492: 195–201.

    Article  CAS  PubMed  Google Scholar 

  42. Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U . Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 2005; 162: 127–134.

    Article  PubMed  Google Scholar 

  43. Urani A, Chourbaji S, Gass P . Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 2005; 29: 805–828.

    Article  CAS  PubMed  Google Scholar 

  44. Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L et al. Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 2002; 160: 353–361.

    Article  CAS  PubMed  Google Scholar 

  45. Koch S, Perry KW, Nelson DL, Conway RG, Threlkeld PG, Bymaster FP . R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study. Neuropsychopharmacology 2002; 27: 949–959.

    Article  CAS  PubMed  Google Scholar 

  46. Blardi P, de Lalla A, Auteri A, Iapichino S, Dell'Erba A, Castrogiovanni P . Plasma catecholamine levels after fluoxetine treatment in depressive patients. Neuropsychobiology 2005; 51: 72–76.

    Article  CAS  PubMed  Google Scholar 

  47. Anderson GM, Segman RH, King RA . Serotonin and suicidality: the impact of fluoxetine administration. II: Acute neurobiological effects. Israel J Psychiatry Relat Sci 1995; 32: 44–50.

    CAS  Google Scholar 

  48. Londborg PD, Smith WT, Glaudin V, Painter JR . Short-term cotherapy with clonazepam and fluoxetine: anxiety, sleep disturbance and core symptoms of depression. J Affective Disorders 2000; 61: 73–79.

    Article  CAS  Google Scholar 

  49. Serra M, Pisu MG, Muggironi M, Parodo V, Papi G, Sari R et al. Opposite effects of short- versus long-term administration of fluoxetine on the concentrations of neuroactive steroids in rat plasma and brain. Psychopharmacology 2001; 158: 48–54.

    Article  CAS  PubMed  Google Scholar 

  50. Smith WT, Londborg PD, Glaudin V, Painter JR . Short-term augmentation of fluoxetine with clonazepam in the treatment of depression: a double-blind study (see comment). Am J Psychiatry 1998; 155: 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  51. Wilson S, Argyropoulos S . Antidepressants and sleep: a qualitative review of the literature. Drugs 2005; 65: 927–947.

    Article  CAS  PubMed  Google Scholar 

  52. Palotas M, Palotas A, Puskas LG, Kitajka K, Pakaski M, Janka Z et al. Gene expression profile analysis of the rat cortex following treatment with imipramine and citalopram. Int J Neuropsychopharmacol 2004; 7: 401–413.

    Article  CAS  PubMed  Google Scholar 

  53. Tsankova NM, Kumar A, Nestler EJ . Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 2004; 24: 5603–5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishihara K, Sasa M . Mechanism underlying the therapeutic effects of electroconvulsive therapy (ECT) on depression. Jap J Pharmacol 1999; 80: 185–189.

    Article  CAS  PubMed  Google Scholar 

  55. Kapur S, Austin MC, Underwood MD, Arango V, Mann JJ . Electroconvulsive shock increases tyrosine hydroxylase and neuropeptide Y gene expression in the locus coeruleus. Brain Research. Mol Brain Res 1993; 18: 121–126.

    Article  CAS  PubMed  Google Scholar 

  56. Szabo ST, Blier P . Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity (comment). Biol Psychiatry 2001; 50: 644–646.

    Article  CAS  PubMed  Google Scholar 

  57. Ledoux L, Sastre JP, Buda C, Luppi PH, Jouvet M . Alterations in c-fos expression after different experimental procedures of sleep deprivation in the cat. Brain Res 1996; 735: 108–118.

    Article  CAS  PubMed  Google Scholar 

  58. Majumdar S, Mallick BN . Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neurosci Lett 2003; 338: 193–196.

    Article  CAS  PubMed  Google Scholar 

  59. Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE, Turek FW et al. Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 1995; 268: R1456–R1463.

    CAS  PubMed  Google Scholar 

  60. Lanfumey L, Mannoury La Cour C, Froger N, Hamon M . 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem Res 2000; 25: 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  61. Simansky KJ . Serotonergic control of the organization of feeding and satiety. Behav Brain Res 1996; 73: 37–42.

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez L, Parada M, Baptista T, Schwartz D, West HL, Mark GP et al. Hypothalamic serotonin in treatments for feeding disorders and depression as studied by brain microdialysis. J Clin Psychiatry 1991; 52 (Suppl): 32–40.

    PubMed  Google Scholar 

  63. Fuller RW . Serotonergic stimulation of pituitary–adrenocortical function in rats. Neuroendocrinology 1981; 32: 118–127.

    Article  CAS  PubMed  Google Scholar 

  64. Bottai D, Guzowski JF, Schwarz MK, Kang SH, Xiao B, Lanahan A et al. Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate early gene expression. J Neurosci 2002; 22: 167–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szumlinski KK, Dehoff MH, Kang SH, Frys KA, Lominac KD, Klugmann M et al. Homer proteins regulate sensitivity to cocaine. Neuron 2004; 43: 401–413.

    Article  CAS  PubMed  Google Scholar 

  66. Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK et al. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes, Brain, Behav 2005; 4: 273–288.

    Article  CAS  Google Scholar 

  67. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T et al. Krox-20 controls myelination in the peripheral nervous system. Nature 1994; 371: 796–799.

    Article  CAS  PubMed  Google Scholar 

  68. Williams J, Dragunow M, Lawlor P, Mason S, Abraham WC, Leah J et al. Krox20 may play a key role in the stabilization of long-term potentiation. Brain Research. Mol Brain Res 1995; 28: 87–93.

    Article  CAS  PubMed  Google Scholar 

  69. Matsuo R, Murayama A, Saitoh Y, Sakaki Y, Inokuchi K . Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J Neurochem 2000; 74: 2239–2249.

    Article  CAS  PubMed  Google Scholar 

  70. Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG et al. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Progr Neurobiol 1999; 57: 421–450.

    Article  CAS  Google Scholar 

  71. Ronnback A, Dahlqvist P, Bergstrom SA, Olsson T . Diurnal effects of enriched environment on immediate early gene expression in the rat brain. Brain Res 2005; 1046: 137–144.

    Article  CAS  PubMed  Google Scholar 

  72. Burgess HA, Reiner O . Alternative splice variants of doublecortin-like kinase are differentially expressed and have different kinase activities. J Biol Chem 2002; 277: 17696–17705.

    Article  CAS  PubMed  Google Scholar 

  73. Vreugdenhil E, Datson N, Engels B, de Jong J, van Koningsbruggen S, Schaaf M et al. Kainate-elicited seizures induce mRNA encoding a CaMK-related peptide: a putative modulator of kinase activity in rat hippocampus. J Neurobiol 1999; 39: 41–50.

    Article  CAS  PubMed  Google Scholar 

  74. Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR . A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci 1998; 18: 5301–5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glavan G, Sket D, Zivin M . Modulation of neuroleptic activity of 9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylergoline bimaleinate (LEK-8829) by D1 intrinsic activity in hemi-parkinsonian rats. Mol Pharmacol 2002; 61: 360–368.

    Article  CAS  PubMed  Google Scholar 

  76. Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ . Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003; 71: 208–219.

    Article  CAS  PubMed  Google Scholar 

  77. Dupont-Versteegden EE, Houle JD, Dennis RA, Zhang J, Knox M, Wagoner G et al. Exercise-induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats. Muscle Nerve 2004; 29: 73–81.

    Article  CAS  PubMed  Google Scholar 

  78. Yanamoto H, Mizuta I, Nagata I, Xue J, Zhang Z, Kikuchi H et al. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res 2000; 877: 331–344.

    Article  CAS  PubMed  Google Scholar 

  79. Krueger-Naug AM, Emsley JG, Myers TL, Currie RW, Clarke DB . Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy. Neuroscience 2003; 116: 49–58.

    Article  CAS  PubMed  Google Scholar 

  80. Tahira T, Ishizaka Y, Itoh F, Nakayasu M, Sugimura T, Nagao M . Expression of the ret proto-oncogene in human neuroblastoma cell lines and its increase during neuronal differentiation induced by retinoic acid. Oncogene 1991; 6: 2333–2338.

    CAS  PubMed  Google Scholar 

  81. Ikuno N, Shimokawa I, Nakamura T, Ishizaka Y, Ikeda T . Ret-oncogene expression correlates with neuronal differentiation of neuroblastic tumors. Pathol, Res Practice 1995; 191: 92–99.

    Article  CAS  Google Scholar 

  82. Colucci-D'Amato GL, D'Alessio A, Filliatreau G, Florio T, Di Giamberardino L, Chiappetta G et al. Presence of physiologically stimulated RET in adult rat brain: induction of RET expression during nerve regeneration. Cell Growth Different 1996; 7: 1081–1086.

    CAS  Google Scholar 

  83. Russo-Neustadt AA, Chen MJ . Brain-derived neurotrophic factor and antidepressant activity. Curr Pharmaceut Design 2005; 11: 1495–1510.

    Article  CAS  Google Scholar 

  84. Rauchova H, Zacharova G, Soukup T . Influence of chronically altered thyroid status on the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase in female inbred lewis rats. Hormone Metab Res 2004; 36: 286–290.

    Article  CAS  Google Scholar 

  85. Barsano CP, Garces J, Iqbal Z . Metabolic implications of low-dose triiodothyronine administration in rats: relevance to the adjunctive use of triiodothyronine in the treatment of depression (see comment). Biol Psychiatry 1994; 35: 814–823.

    Article  CAS  PubMed  Google Scholar 

  86. Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D . Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 2004; 8: 90–97.

    Article  PubMed  Google Scholar 

  87. Saxena S, Brody AL, Ho ML, Zohrabi N, Maidment KM, Baxter Jr LR . Differential brain metabolic predictors of response to paroxetine in obsessive–compulsive disorder versus major depression. Am J Psychiatry 2003; 160: 522–532.

    Article  PubMed  Google Scholar 

  88. Bal-Klara A . Effects of some antidepressant drugs on the activity of glial cell enzymes in culture. Eur J Pharmacol 1989; 161: 231–235.

    Article  CAS  PubMed  Google Scholar 

  89. Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA . Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 1999; 18: 3024–3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Loffing J, Flores S, Staub O . Sgk kinases and their role in epithelial transport. Annu Rev Physiol 2006; 68: 461–490.

    Article  CAS  PubMed  Google Scholar 

  91. Sahoo S, Brickley D, Kocherginsky M, Conzen S . Coordinate expression of the PI3-kinase downstream effectors serum and glucocorticoid-induced kinase (SGK-1) and Akt-1 in human breast cancer. Eur J Cancer 2005; 41: 2754–2759.

    Article  CAS  PubMed  Google Scholar 

  92. Mizuno H, Nishida E . The ERK MAP kinase pathway mediates induction of SGK (serum- and glucocorticoid-inducible kinase) by growth factors. Genes Cells 2001; 6: 261–268.

    Article  CAS  PubMed  Google Scholar 

  93. Schoenebeck B, Bader V, Zhu XR, Schmitz B, Lubbert H, Stichel CC . Sgk1, a cell survival response in neurodegenerative diseases. Mol Cell Neurosci 2005; 30: 249–264.

    Article  CAS  PubMed  Google Scholar 

  94. Imaizumi K, Tsuda M, Wanaka A, Tohyama M, Takagi T . Differential expression of sgk mRNA, a member of the Ser/Thr protein kinase gene family, in rat brain after CNS injury. Brain Research. Mol Brain Res 1994; 26: 189–196.

    Article  CAS  PubMed  Google Scholar 

  95. Nishida Y, Nagata T, Takahashi Y, Sugahara-Kobayashi M, Murata A, Asai S . Alteration of serum/glucocorticoid regulated kinase-1 (sgk-1) gene expression in rat hippocampus after transient global ischemia. Brain Research. Mol Brain Res 2004; 123: 121–125.

    Article  CAS  PubMed  Google Scholar 

  96. Tsai KJ, Chen SK, Ma YL, Hsu WL, Lee EH . sgk, a primary glucocorticoid-induced gene, facilitates memory consolidation of spatial learning in rats. Proc Natl Acad Sci USA 2002; 99: 3990–3995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee EH, Hsu WL, Ma YL, Lee PJ, Chao CC . Enrichment enhances the expression of sgk, a glucocorticoid-induced gene, and facilitates spatial learning through glutamate AMPA receptor mediation. Eur J Neurosci 2003; 18: 2842–2852.

    Article  PubMed  Google Scholar 

  98. David S, Kalb RG . Serum/glucocorticoid-inducible kinase can phosphorylate the cyclic AMP response element binding protein, CREB. FEBS Lett 2005; 579: 1534–1538.

    Article  CAS  PubMed  Google Scholar 

  99. Nuber U, Kriaucionis S, Roloff TC, Guy J, Selfridge J, Steinhoff C et al. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum Mol Genet 2005; 14: 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  100. von Hertzen LS, Giese KP . Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J Neurosci 2005; 25: 1935–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao X, Grove K, Lau S, McWeeney S, Smith M . Deoxyribonucleic acid nicroarray analysis of gene expression pattern in the arcuate nucleus/ventromedial nucleus of hypothalamus during lactation. Endocrinology 2005; 146: 4391–4398.

    Article  CAS  PubMed  Google Scholar 

  102. Bohmer C, Philippin M, Rajamanickam J, Mack A, Broer S, Palmada M et al. Stimulation of the EAAT4 glutamate transporter by SGK protein kinase isoforms and PKB. Biochem Biophys Res Commun 2004; 324: 1242–1248.

    Article  CAS  PubMed  Google Scholar 

  103. Thomas NL, Coughtrie MW . Sulfation of apomorphine by human sulfotransferases: evidence of a major role for the polymorphic phenol sulfotransferase, SULT1A1. Xenobiotica 2003; 33: 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  104. Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MW . Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 2001; 86: 2734–2742.

    CAS  PubMed  Google Scholar 

  105. Mizushima K, Miyamoto Y, Tsukahara F, Hirai M, Sakaki Y, Ito T . A novel G-protein-coupled receptor gene expressed in striatum. Genomics 2000; 69: 314–321.

    Article  CAS  PubMed  Google Scholar 

  106. Brandish PE, Su M, Holder DJ, Hodor P, Szumiloski J, Kleinhanz RR et al. Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 2005; 45: 861–872.

    Article  CAS  PubMed  Google Scholar 

  107. Massart R, Diaz J, Griffon N, Vernier P, Sokoloff P . Regional and cellular expression pattern of the striatum-specific orphan G protein-coupled receptor Gpr88. 7e Colloque de la Société des neurosciences, Lille 2005, E.48 (http://www.neurosciences.asso.fr/activites/colloques/sn05/posters/R2/E_48.html).

  108. Social Anxiety Disorder. Bandelow B, Stein DJ (eds). Marcel Dekker: New York, 2004.

  109. Angelucci F, Mathe AA, Aloe L . Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Progr Brain Res 2004; 146: 151–165.

    Article  CAS  Google Scholar 

  110. Sei H, Saitoh D, Yamamoto K, Morita K, Morita Y . Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res 2000; 877: 387–390.

    Article  CAS  PubMed  Google Scholar 

  111. Adrien J . Neurobiological bases for the relation between sleep and depression (see comment). Sleep Med Rev 2002; 6: 341–351.

    Article  PubMed  Google Scholar 

  112. Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ . Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 2004; 29: 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  113. Adams JH, Wigg KG, King N, Burcescu I, Vetro A, Kiss E . Association study of neurotrophic tyrosine kinase receptor type 2 (NTRK2) and childhood-onset mood disorders. Am J Med Genet. Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics 2005; 132: 90–95.

    Article  Google Scholar 

  114. Henneberger C, Juttner R, Schmidt SA, Walter J, Meier JC, Rothe T et al. GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening. Eur J Neurosci 2005; 21: 431–440.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all our collagues for their help: colleagues in the Bartfai lab: Hedie Badieh, Marga Behrens, Svetlana Gaidarova, Jeffrey Kinney, Janell Laca, Jacinta Lucero, Shuei Sugama, Iustin Tabarean and Sebastian Wirz all spent countless hours in assisting us with the treatments described. Colleagues in the Hoyer lab: Dominique Fehlmann, Edi Schuepbach, Sabine Leonhard and Deepak Thakker have performed ISH, autoradiography and data analysis thereof. Colleagues in the Maier lab: Jose Luis Crespo and Doris Rueegg have performed the RNA isolations and cloning of the in situ probes. We also thank Nicole Hartmann and her team from the Genomics Factory at NIBR Basel for the microarray work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Bartfai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conti, B., Maier, R., Barr, A. et al. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12, 167–189 (2007). https://doi.org/10.1038/sj.mp.4001897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001897

Keywords

  • electroconvulsive
  • sleep
  • fluoxetine
  • depression
  • antidepressant
  • microarray

This article is cited by

Search

Quick links