Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes

Abstract

Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology to determine the expression of approximately 22 000 mRNA transcripts in post-mortem tissue from two brain regions in patients with bipolar disorder and matched healthy controls. Dorsolateral prefrontal cortex tissue from a cohort of 70 subjects and orbitofrontal cortex tissue from a separate cohort of 30 subjects was investigated. The final analysis included 30 bipolar and 31 control subjects for the dorsolateral prefrontal cortex and 10 bipolar and 11 control subjects for the orbitofrontal cortex. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing. In the orbitofrontal cortex, 393 differentially expressed transcripts were identified by microarray analysis and a representative subset was validated by quantitative real-time PCR. Pathway analysis revealed significant upregulation of genes involved in G-protein coupled receptor signalling and response to stimulus (in particular the immune response), while genes relating to the ubiquitin cycle and intracellular transport showed coordinated downregulation in bipolar disorder. Additionally, several genes involved in synaptic function were significantly downregulated in bipolar disorder. No significant changes in gene expression were observed in the dorsolateral prefrontal cortex using microarray analysis or quantitative real-time PCR. Our findings implicate the orbitofrontal cortex as a region prominently involved in bipolar disorder and indicate that diverse processes are affected. Overall, our results suggest that dysregulation of the ubiquitin pathway and synaptic function may be central to the disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. OMIM Record 125480. National Center for Biotechnology Information website (cited 2006 March); Available from: http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=125480.

  2. OMIM Record 309200. National Center for Biotechnology Information website (cited 2006 March); Available from: http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309200.

  3. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697, 643.

    Article  CAS  Google Scholar 

  4. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P . Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 2002; 22: 2718–2729.

    Article  CAS  Google Scholar 

  5. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  Google Scholar 

  6. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  7. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  Google Scholar 

  8. Iwamoto K, Bundo M, Kato T . Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–253.

    Article  CAS  Google Scholar 

  9. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  10. Benes FM, Matzilevich D, Burke RE, Walsh J . The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11: 241–251.

    Article  CAS  Google Scholar 

  11. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–1962.

    Article  CAS  Google Scholar 

  12. Sun X, Wang JF, Tseng M, Young LT . Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 2006; 31: 189–196.

    PubMed  PubMed Central  Google Scholar 

  13. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T . Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 2004; 9: 406–416.

    Article  CAS  Google Scholar 

  14. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S . Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

    Article  CAS  Google Scholar 

  15. Bezchlibnyk YB, Wang JF, McQueen GM, Young LT . Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. J Neurochem 2001; 79: 826–834.

    Article  CAS  Google Scholar 

  16. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006.

  17. Lacerda AL, Keshavan MS, Hardan AY, Yorbik O, Brambilla P, Sassi RB et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatry 2004; 55: 353–358.

    Article  Google Scholar 

  18. Ryan MM, Huffaker SJ, Webster MJ, Wayland M, Freeman T, Bahn S . Application and optimization of microarray technologies for human postmortem brain studies. Biol Psychiatry 2004; 55: 329–336.

    Article  CAS  Google Scholar 

  19. Affymetrix. (cited 2006 March); Available from: www.affymetrix.com.

  20. Bolstad B . affyPLM: Fitting probe level models. Bioconductor website. cited 2005; Available from: http://www.bioconductor.org/repository/devel/vignette/AffyExtensions.pdf.

  21. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  22. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995; 57: 289–300.

    Google Scholar 

  23. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  Google Scholar 

  24. Pollard KS, Dudoit S, van der Laan MJ . Multiple Testing Procedures: R Multtest Package and Applications to Genomics, UC Berkeley Division of Biostatistics Working Paper Series, Working Paper No. 164. The Berkeley Electronic Press, 2004 [cited 2006, March]; Available from: http://www.bepress.com/ucbbiostat/paper164/

  25. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  Google Scholar 

  26. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 2004; 55: 346–352.

    Article  CAS  Google Scholar 

  27. Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, Wong WH . GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in gene ontologytrade mark space. Appl Bioinformat 2004; 3: 261–264.

    Article  CAS  Google Scholar 

  28. GoSurfer. (cited 2006 March); Available from: http://www.biostat.harvard.edu/complab/gosurfer/.

  29. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V et al. NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 2003; 31: 82–86.

    Article  CAS  Google Scholar 

  30. Gene Ontology Database. The Gene Ontology Project, (cited 2006 March); Available from: http://www.geneontology.org/.

  31. Zhong S, Li C, Wong WH . ChipInfo: software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res 2003; 31: 3483–3486.

    Article  CAS  Google Scholar 

  32. Khatri P, Draghici S, Ostermeier GC, Krawetz SA . Profiling gene expression using onto-express. Genomics 2002; 79: 266–270.

    Article  CAS  Google Scholar 

  33. Onto-Express. (cited 2006 March); Available from: http://vortex.cs.wayne.edu/research.htm.

  34. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  35. Bosetti F, Bell JM, Manickam P . Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull 2005; 65: 331–338.

    Article  CAS  Google Scholar 

  36. Pemberton LF, Paschal BM . Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 2005; 6: 187–198.

    Article  CAS  Google Scholar 

  37. Petronis A . Epigenetics and bipolar disorder: new opportunities and challenges. Am J Med Genet C Semin Med Genet 2003; 123: 65–75.

    Article  Google Scholar 

  38. Berrettini WH . Susceptibility loci for bipolar disorder: overlap with inherited vulnerability to schizophrenia. Biol Psychiatry 2000; 47: 245–251.

    Article  CAS  Google Scholar 

  39. Fujiwara K, Tenno T, Sugasawa K, Jee JG, Ohki I, Kojima C et al. Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem 2004; 279: 4760–4767.

    Article  CAS  Google Scholar 

  40. Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 2002; 51: 273–279.

    Article  Google Scholar 

  41. Haldane M, Frangou S . New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 943–960.

    Article  Google Scholar 

  42. Blumberg HP, Stern E, Ricketts S, Martinez D, de Asis J, White T et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999; 156: 1986–1988.

    CAS  Google Scholar 

  43. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–1098.

    Article  CAS  Google Scholar 

  44. Cotter D, Hudson L, Landau S . Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia. Bipolar Disord 2005; 7: 358–369.

    Article  Google Scholar 

  45. Roberts NA, Beer JS, Werner KH, Scabini D, Levens SM, Knight RT et al. The impact of orbital prefrontal cortex damage on emotional activation to unanticipated and anticipated acoustic startle stimuli. Cogn Affect Behav Neurosci 2004; 4: 307–316.

    Article  Google Scholar 

  46. Rapaport MH, Guylai L, Whybrow P . Immune parameters in rapid cycling bipolar patients before and after lithium treatment. J Psychiatr Res 1999; 33: 335–340.

    Article  CAS  Google Scholar 

  47. Liu HC, Yang YY, Chou YM, Chen KP, Shen WW, Leu SJ . Immunologic variables in acute mania of bipolar disorder. J Neuroimmunol 2004; 150: 116–122.

    Article  CAS  Google Scholar 

  48. Lanningham-Foster L, Green CL, Langkamp-Henken B, Davis BA, Nguyen KT, Bender BS et al. Overexpression of CRIP in transgenic mice alters cytokine patterns and the immune response. Am J Physiol Endocrinol Metab 2002; 282: E1197–E1203.

    Article  CAS  Google Scholar 

  49. Beyer J, Kuchibhatla M, Gersing K, Krishnan KR . Medical comorbidity in a bipolar outpatient clinical population. Neuropsychopharmacology 2005; 30: 401–404.

    Article  Google Scholar 

  50. Wilkins K . Bipolar I disorder, social support and work. Health Rep 2004; 15 (Suppl): 21–30.

    PubMed  Google Scholar 

  51. Goodwin RD, Jacobi F, Thefeld W . Mental disorders and asthma in the community. Arch Gen Psychiatry 2003; 60: 1125–1130.

    Article  Google Scholar 

  52. Brown ES, Suppes T, Khan DA, Carmody III TJ . Mood changes during prednisone bursts in outpatients with asthma. J Clin Psychopharmacol 2002; 22: 55–61.

    Article  Google Scholar 

  53. Knox AJ, Higgins BG, Hall IP, Tattersfield AE . Effect of oral lithium on bronchial reactivity in asthma. Clin Sci (London) 1992; 82: 407–412.

    Article  CAS  Google Scholar 

  54. Kato T, Kato N . Molecular genetics of bipolar disorder]. Tanpakushitsu Kakusan Koso 1999; 44: 1975–1981.

    CAS  PubMed  Google Scholar 

  55. Escriba PV, Ozaita A, Garcia-Sevilla JA . Increased mRNA expression of alpha2A-adrenoceptors, serotonin receptors and mu-opioid receptors in the brains of suicide victims. Neuropsychopharmacology 2004; 29: 1512–1521.

    Article  CAS  Google Scholar 

  56. Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 2002; 7: 745–754.

    Article  CAS  Google Scholar 

  57. Rubinow DR . Cerebrospinal fluid somatostatin and psychiatric illness. Biol Psychiatry 1986; 21: 341–365.

    Article  CAS  Google Scholar 

  58. Sharma RP, Bissette G, Janicak PG, Davis JM, Nemeroff CB . Elevation of CSF somatostatin concentrations in mania. Am J Psychiatry 1995; 152: 1807–1809.

    Article  CAS  Google Scholar 

  59. Pazzaglia PJ, George MS, Post RM, Rubinow DR, Davis CL . Nimodipine increases CSF somatostatin in affectively ill patients. Neuropsychopharmacology 1995; 13: 75–83.

    Article  CAS  Google Scholar 

  60. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC . Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000; 288: 154–157.

    Article  CAS  Google Scholar 

  61. Kapczinski F, Frey BN, Zannatto V . Physiopathology of bipolar disorders: what have changed in the last 10 years? Rev Bras Psiquiatr 2004; 26 (Suppl 3): 17–21.

    Article  Google Scholar 

  62. Bezchlibnyk Y, Young LT . The neurobiology of bipolar disorder: focus on signal transduction pathways and the regulation of gene expression. Can J Psychiatry 2002; 47: 135–148.

    Article  Google Scholar 

  63. Gould TD, Manji HK . Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res 2002; 53: 687–697.

    Article  Google Scholar 

  64. Brunello N, Tascedda F . Cellular mechanisms and second messengers: relevance to the psychopharmacology of bipolar disorders. Int J Neuropsychopharmacol 2003; 6: 181–189.

    Article  CAS  Google Scholar 

  65. Hanz S, Fainzilber M . Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics. Neuroscientist 2004; 10: 404–408.

    Article  CAS  Google Scholar 

  66. Ciechanover A . The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem Soc Trans 2003; 31: 474–481.

    Article  CAS  Google Scholar 

  67. DiAntonio A, Hicke L . Ubiquitin-dependent regulation of the synapse. Annu Rev Neurosci 2004; 27: 223–246.

    Article  CAS  Google Scholar 

  68. Ciechanover A, Schwartz AL . The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 2004; 1695: 3–17.

    Article  CAS  Google Scholar 

  69. Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, Householder DB et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet 2002; 32: 420–425.

    Article  CAS  Google Scholar 

  70. Holler D, Dikic I . Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem Pharmacol 2004; 67: 1013–1017.

    Article  CAS  Google Scholar 

  71. Johnston JA, Madura K . Rings, chains and ladders: ubiquitin goes to work in the neuron. Prog Neurobiol 2004; 73: 227–257.

    Article  CAS  Google Scholar 

  72. Hegde AN . Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73: 311–357.

    Article  CAS  Google Scholar 

  73. Nakayama M, Miyake T, Gahara Y, Ohara O, Kitamura T . A novel RING-H2 motif protein downregulated by axotomy: its characteristic localization at the postsynaptic density of axosomatic synapse. J Neurosci 1995; 15 (7 Part 2): 5238–5248.

    Article  CAS  Google Scholar 

  74. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41–49.

    Article  CAS  Google Scholar 

  75. Walton MR, Dragunow I . Is CREB a key to neuronal survival? Trends Neurosci 2000; 23: 48–53.

    Article  CAS  Google Scholar 

  76. Irazusta J, Larrinaga G, Gonzalez-Maeso J, Gil J, Meana JJ, Casis L . Distribution of prolyl endopeptidase activities in rat and human brain. Neurochem Int 2002; 40: 337–345.

    Article  CAS  Google Scholar 

  77. Cunningham DF, O'Connor B . Proline specific peptidases. Biochim Biophys Acta 1997; 1343: 160–186.

    Article  CAS  Google Scholar 

  78. Maes M, Goossens F, Scharpe S, Calabrese J, Desnyder R, Meltzer HY . Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res 1995; 58: 217–225.

    Article  CAS  Google Scholar 

  79. Holsboer F . The role of peptides in treatment of psychiatric disorders. J Neural Transm Suppl 2003; 64: 17–34.

    Article  CAS  Google Scholar 

  80. Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–295.

    Article  CAS  Google Scholar 

  81. Coyle JT, Duman RS . Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003; 38: 157–160.

    Article  CAS  Google Scholar 

  82. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    Article  CAS  Google Scholar 

  83. Kato T, Kato N . Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2 (3 Part 1): 180–190.

    Article  CAS  Google Scholar 

  84. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood III WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  Google Scholar 

  85. Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 2005; 58: 85–96.

    Article  CAS  Google Scholar 

  86. Sokolov BP, Jiang L, Trivedi NS, Aston C . Transcription profiling reveals mitochondrial, ubiquitin and signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse or dependence. J Neurosci Res 2003; 72: 756–767.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Stanley Medical Research Institute (SMRI) and the donations of the Stanley brain collection courtesy of Drs Michael B Knable, E Fuller Torrey, Serge Weis and Robert H Yolken. We gratefully acknowledge SMRI centre support. We thank MRC Geneservice for hybridisation of the arrays, Dr Rachel Craddock for her contribution to the immune response discussion and all other members of the Bahn laboratory for their support. Margaret Ryan is a recipient of a Young Investigator Award from the National Alliance for Research of Schizophrenia and Depression (NARSAD). Stephen Huffaker is supported by the National Institutes of Health-Cambridge Health Science Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, M., Lockstone, H., Huffaker, S. et al. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 11, 965–978 (2006). https://doi.org/10.1038/sj.mp.4001875

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001875

Keywords

This article is cited by

Search

Quick links