Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes

A Corrigendum to this article was published on 28 November 2006

Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, starting in early childhood and persisting into adulthood in the majority of cases. Family and twin studies have demonstrated the importance of genetic factors and candidate gene association studies have identified several loci that exert small but significant effects on ADHD. To provide further clarification of reported associations and identify novel associated genes, we examined 1038 single-nucleotide polymorphisms (SNPs) spanning 51 candidate genes involved in the regulation of neurotransmitter pathways, particularly dopamine, norepinephrine and serotonin pathways, in addition to circadian rhythm genes. Analysis used within family tests of association in a sample of 776 DSM-IV ADHD combined type cases ascertained for the International Multi-centre ADHD Gene project. We found nominal significance with one or more SNPs in 18 genes, including the two most replicated findings in the literature: DRD4 and DAT1. Gene-wide tests, adjusted for the number of SNPs analysed in each gene, identified associations with TPH2, ARRB2, SYP, DAT1, ADRB2, HES1, MAOA and PNMT. Further studies will be needed to confirm or refute the observed associations and their generalisability to other samples.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Asherson P . IMAGE consortium. Attention-deficit hyperactivity disorder in the post-genomic era. Eur Child Adolesc Psychiatry 2004; 13 (Suppl 1): 150–170.

    Google Scholar 

  2. Burd L, Klug MG, Coumbe MJ, Kerbeshian J . Children adolescents with attention deficit-hyperactivity disorder: 1. Prevalence cost of care. J Child Neurol 2003; 18: 555–561.

    Article  PubMed  Google Scholar 

  3. Kessler RC, Adler L, Ames M, Barkley RA, Birnbaum H, Greenberg P et al. The prevalence effects of adult attention deficit/hyperactivity disorder on work performance in a nationally representative sample of workers. J Occup Environ Med 2005; 47: 565–572.

    Article  PubMed  Google Scholar 

  4. Biederman J, Faraone SV . Attention-deficit hyperactivity disorder. Lancet 2005; 366: 237–248.

    Article  PubMed  Google Scholar 

  5. Taylor E, Dopfner M, Sergeant J, Asherson P, Banaschewski T, Buitelaar J et al. European clinical guidelines for hyperkinetic disorder – first upgrade. Eur Child Adolesc Psychiatry 2004; 13 (Suppl 1): 17–30.

    Google Scholar 

  6. Asherson P . Clinical assessment and treatment of attention deficit hyperactivity disorder in adults. Expert Rev Neurotherapeutics 2005; 5: 525–539.

    Article  Google Scholar 

  7. Todd RD, Lobos EA, Sun LW, Neuman RJ . Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. 2003; 8: 103–108.

  8. Faraone SV, Perlis RH, Doyle AE, Smoller JH, Goralnick JJ, Holmergen MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  9. Willcutt EG, Pennington BF, DeFries JC . Twin study of the etiology of comorbidity between reading disability and attention-deficit/hyperactivity disorder. Am J Med Genet 2000; 96: 293–301.

    Article  CAS  PubMed  Google Scholar 

  10. Gilger JW, Pennington BF, DeFries JC . A twin study of the etiology of comorbidity: attention-deficit hyperactivity disorder and dyslexia. J Am Acad Child Adolesc Psychiatry 1992; 31: 343–348.

    Article  CAS  PubMed  Google Scholar 

  11. Kuntsi J, Eley TC, Taylor A, Hughes C, Asherson P, Caspi A et al. Co-occurrence of ADHD and low IQ has genetic origins. Am J Med Genet B Neuropsychiatr Genet 2004; 124: 41–47.

    Article  Google Scholar 

  12. Arcos-Burgos M, Castellanos X, Pineda D, Lopera F, Palcio JD, Palacio LJ et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am J Hum Genet 2004; 75: 998–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bakker SC, van der Meulen EM, Buitelaar JK, Sandkuijl LA, Pauls DL, Monsuur AJ et al. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. Am J Hum Genet 2003; 72: 1251–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL et al. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet 2002; 70: 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smalley SL, Kustanovich V, Minassian SL, Stone JL, Ogdie MN, McGough JJ et al. Genetic linkage of attention-deficit/hyperactivity disorder on chromosome 16p13, in a region implicated in autism. Am J Hum Genet 2002; 71: 959–963.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ogdie MN, Macphie IL, Minassian SL, Yang M, Fisher SE, Francks C et al. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. Am J Hum Genet 2003; 72: 1268–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogdie MN, Fisher SE, Yang M, Ishii J, Francks C, Loo SK et al. Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. Am J Hum Genet 2004; 75: 661–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hebebrand J, Dempfle A, Saar K, Thiele H, Herpetz-Dahlmann B, Linder M et al. A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs. Mol Psychiatry 2005; 11: 196–205.

    Article  CAS  Google Scholar 

  19. Winstanley CA, Theobald DE, Dalley JW, Robbins TW . Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 2005; 30: 669–682.

    Article  CAS  PubMed  Google Scholar 

  20. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG . Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 1999; 283: 397–401.

    Article  CAS  PubMed  Google Scholar 

  21. Brookes KJ, Knight J, Xu X, Asherson P . DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 33–37.

    Article  CAS  Google Scholar 

  22. Hallahan B, Garland MR . Essential fatty acids and mental health. Br J Psychiatry 2005; 186: 275–277.

    Article  PubMed  Google Scholar 

  23. Tjon Pian Gi CV, Broeren JP, Starreveld JS, Versteegh FG . Melatonin for treatment of sleeping disorders in children with attention deficit/hyperactivity disorder: a preliminary open label study. Eur J Pediatr 2003; 162: 554–555.

    Article  PubMed  Google Scholar 

  24. Sei H et al. Increase of hippocampal acetylcholine release at the onset of dark phase is suppressed in a mutant mice model of evening-type individuals. Neuroscience 2003; 117: 785–789.

    Article  CAS  PubMed  Google Scholar 

  25. Castellanos FX, Tannock R . Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617–628.

    Article  CAS  PubMed  Google Scholar 

  26. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  CAS  Google Scholar 

  27. Ford T, Goodman R, Meltzer H . The British Child and Adolescent Mental Health Survey 1999: the prevalence of DSM-IV disorders. J Am Acad Child Adolesc Psychiatry 2003; 42: 1203–1211.

    Article  PubMed  Google Scholar 

  28. Taylor E, Schachar R, Thorley G, Wieselberg M . Conduct disorder and hyperactivity: I. Separation of hyperactivity and antisocial conduct in British child psychiatric patients. Br J Psychiatry 1986; 149: 760–767.

    Article  CAS  PubMed  Google Scholar 

  29. Conners CK . Conners’ Rating Scales-Revised: Technical Manual. 2003 Sixth Printing MHS.

  30. Goodman R . The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry 1997; 38: 581–586.

    Article  CAS  PubMed  Google Scholar 

  31. Brookes K, Mill J, Guindalini C, Curran S, Xu X, Knight J et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol. Arch Gen Psychiatry 2006; 63: 74–81.

    Article  CAS  PubMed  Google Scholar 

  32. Brookes KJ, Xu X, Chen CK, Huang YS, Wu YY, Asherson P . No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study. BMC Med Genet 2005; 6: 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu X, Mill J, Chen CK, Brookes K, Taylor E, Asherson P . Family-based association study of serotonin transporter gene polymorphisms in attention deficit hyperactivity disorder: no evidence for association in UK and Taiwanese samples. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 11–13.

    Article  CAS  Google Scholar 

  34. Ao SI, Yip K, Cheung D, Fong PY, Melhado I, Sham PC . CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics 2005; 21: 1735–1736.

    Article  CAS  PubMed  Google Scholar 

  35. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  36. Neale BM, Sham PC . The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75: 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng Y, Wigg KG, Makkar R, Ickowicz A, Pathare T, Tannock R et al. Sequence variation in the 3′-untranslated region of the dopamine transporter gene and attention-deficit hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet 2005; 139: 1–6.

    Article  CAS  Google Scholar 

  38. Bobb AJ, Addington AM, Sidransky E, Gornick EM, lerch JP, Greenstein JK et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 67–72.

    Article  Google Scholar 

  39. Hawi Z, Lowe N, Kirley A, Gruenhage F, Nothen M, Greenwood T et al. Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci. Mol Psychiatry 2003; 8: 299–308.

    Article  CAS  PubMed  Google Scholar 

  40. Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M, Hawi Z . Multiple marker analysis at the promoter region of the DRD4 gene and ADHD: evidence of linkage and association with the SNP -616. Am J Med Genet B Neuropsychiatr Genet 2004; 131: 33–37.

    Article  Google Scholar 

  41. Bellgrove MA, Hawi Z, Lowe N, Kirley A, Robertson IH, Gill M . DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and −521 SNP. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 81–86.

    Article  Google Scholar 

  42. Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I et al. DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: no evidence for association. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 115–118.

    Article  Google Scholar 

  43. Jiang S, Xin R, Lin S, Qian Y, Tang G, Wang D et al. Linkage studies between attention-deficit hyperactivity disorder and the monoamine oxidase genes. Am J Med Genet 2001; 105: 783–788.

    Article  CAS  PubMed  Google Scholar 

  44. Domschke K, Sheehan K, Lowe N, Kirley A, Mullins C, O'Sullivan R et al. Association analysis of the monoamine oxidase A and B genes with attention deficit hyperactivity disorder (ADHD) in an Irish sample: preferential transmission of the MAO-A 941G allele to affected children. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 110–114.

    Article  Google Scholar 

  45. Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M et al. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 2002; 7: 626–632.

    Article  CAS  PubMed  Google Scholar 

  46. Lawson DC, Turic D, Langely K, Pay KM, Govan CF Norton N et al. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 84–89.

    Article  Google Scholar 

  47. Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M . Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 2002; 7: 913–917.

    Article  CAS  PubMed  Google Scholar 

  48. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 405–409.

    Article  CAS  PubMed  Google Scholar 

  49. Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF . Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 309–315.

    Article  CAS  PubMed  Google Scholar 

  50. Mill J, Richards S, Knight S, Curran S, Taylor E, Asherson P . Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD. Mol Psychiatry 2004; 9: 801–810.

    Article  CAS  PubMed  Google Scholar 

  51. Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 2002; 114: 269–271.

    Article  PubMed  Google Scholar 

  52. Todd RD, Lobos EA, Sun LW, Neuman RJ . Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 2003; 8: 103–108.

    Article  CAS  PubMed  Google Scholar 

  53. Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M et al. Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 2005; 10: 944–949.

    Article  CAS  PubMed  Google Scholar 

  54. Walitza S, Renner TJ, Dempfle A, Konrad K, Wewetzer Ch, Halbach A et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol Psychiatry 2005; 10: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  55. Brookes K, Chen W, Xu X, Taylor E, Asherson P . Association of fatty acid desaturase genes with Attention Deficit Hyperactivity disorder. Biol Psychiatry 2006, in press.

  56. Payton A, Holmes J, Barrett JH, Hever T, Fitzpatrick H, Trumper AL et al. Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder: a family-based study. Am J Med Genet 2001; 105: 464–470.

    Article  CAS  PubMed  Google Scholar 

  57. Hawi Z, Foley D, Kirley A, McCarron M, Fitzgerald M, Gill M . Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): no evidence for association in the Irish population. Mol Psychiatry 2001; 6: 420–424.

    Article  CAS  PubMed  Google Scholar 

  58. Kruglyak L . Power tools for human genetics. Nat Genet 2005; 37: 1299–1300.

    Article  CAS  PubMed  Google Scholar 

  59. Taylor E, Everitt B, Thorley G, Schacher R, Rutter M, Wieselberg M . Conduct disorder and hyperactivity: II. A cluster analytic approach to the identification of a behavioural syndrome. Br J Psychol 1986; 149: 768–777.

    Article  CAS  Google Scholar 

  60. Ho TP, Luk ES, Leung PW, Taylor E, Lieh-Mak F, Bcaon-Shone J . Situational versus pervasive hyperactivity in a community sample. Psychol Med 1996; 26: 309–321.

    Article  CAS  PubMed  Google Scholar 

  61. West A, Langley K, Hamshere ML, Kent L, Craddock N, Owen MJ et al. Evidence to suggest biased phenotypes in children with attention deficit. Mol Psychiatry 2002; 7: 962–966.

    Article  CAS  PubMed  Google Scholar 

  62. Barr CL, Feng Y, Wigg KG, Schachar R, Tannock R, Roberts W et al. 5′-untranslated region of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. Am J Med Genet 2001; 105: 84–90.

    Article  CAS  PubMed  Google Scholar 

  63. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R et al. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. MolPsychiatry 2005; 10: 998–1005.

    CAS  Google Scholar 

  64. Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M et al. The norepinephrine transporter gene attention-deficit hyperactivity disorder. Am J Med Genet 2002; 114: 255–259.

    Article  PubMed  Google Scholar 

  65. McEvoy B, Hawi Z, Fitzgerald M, Gill M . No evidence of linkage or association between the norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. Am J Med Genet 2002; 114: 665–666.

    Article  PubMed  Google Scholar 

  66. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H et al. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 2000; 58: 31–40.

    Article  CAS  PubMed  Google Scholar 

  67. De Luca V, Muglia P, Jain U, Kennedy JL . No evidence of linkage or association between the norepinephrine transporter (NET) gene MnlI polymorphism and adult ADHD. Am J Med Genet B Neuropsychiatr Genet 2004; 124: 38–40.

    Article  Google Scholar 

  68. Kent L, Middle F, Hawi Z, Fitzgerald M, Gill M, Feehan C et al. Nicotinic acetylcholine receptor alpha4 subunit gene polymorphism and attention deficit hyperactivity disorder. Psychiatr Genet 2001; 11: 37–40.

    Article  CAS  PubMed  Google Scholar 

  69. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H et al. Comparison of the role of dopamine, serotonin, and noradrenaline genes in ADHD, ODD and conduct disorder: multivariate regression analysis of 20 genes. Clin Genet 2000; 57: 178–196.

    Article  CAS  PubMed  Google Scholar 

  70. Todd RD, Lobos EA, Sun LW, Neuman RJ . Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 2003; 8: 103–108.

    Article  CAS  PubMed  Google Scholar 

  71. Rowe DC, Van den Oord EJ, Stever C, Giedinghagen LN, Gard JM, Cleveland HH et al. The DRD2 TaqI polymorphism and symptoms of attention deficit hyperactivity disorder. Mol Psychiatry 1999; 4: 580–586.

    Article  CAS  PubMed  Google Scholar 

  72. Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D et al. dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 1991; 266: 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  73. Comings DE . Clinical and molecular genetics of ADHD and Tourette syndrome. Two related polygenic disorders. Ann NY Acad Sci 2001; 931: 50–83.

    Article  CAS  PubMed  Google Scholar 

  74. Todd RD, Lobos EA . Mutation screening of the dopamine D2 receptor gene in attention-deficit hyperactivity disorder subtypes: preliminary report of a research strategy. Am J Med Genet 2002; 114: 34–41.

    Article  PubMed  Google Scholar 

  75. Huang YS, Lin SK, Wu YY, Chao CC, Chen CK . A family-based association study of attention-deficit hyperactivity disorder and dopamine D2 receptor TaqI A alleles. Chang Gung Med J 2003; 26: 897–903.

    PubMed  Google Scholar 

  76. Muglia P, Jain U, Kennedy JL . A transmission disequilibrium test of the Ser9/Gly dopamine D3 receptor gene polymorphism in adult attention-deficit hyperactivity disorder. Behav Brain Res 2002; 130: 91–95.

    Article  CAS  PubMed  Google Scholar 

  77. Barr CL, Wigg KG, Bloom S, Schachar R, Tannock R, Roberts W et al. Further evidence from haplotype analysis for linkage of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. Am J Med Genet 2000; 96: 262–267.

    Article  CAS  PubMed  Google Scholar 

  78. Comings DE, Gade-Andavolu R, Gonzalez N, Blake H, Wu S, MacMurray JP . Additive effect of three noradrenergic genes (ADRA2a, ADRA2C, DBH) on attention-deficit hyperactivity disorder and learning disabilities in Tourette syndrome subjects. Clin Genet 1999; 55: 160–172.

    Article  CAS  PubMed  Google Scholar 

  79. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. MolPsychiatry 1999; 4: 192–196.

    CAS  Google Scholar 

  80. Wigg K, Zai G, Schachar R, Tannock R, Roberts W, Malone M et al. Attention deficit hyperactivity disorder and the gene for dopamine Beta-hydroxylase. Am J Psychiatry 2002; 159: 1046–1048.

    Article  PubMed  Google Scholar 

  81. Roman T, Schmitz M, Polanczyk GV, Eizirik M, Rohde LA, Hutz MH . Further evidence for the association between attention-deficit/hyperactivity disorder and the dopamine-beta-hydroxylase gene. Am J Med Genet 2002; 114: 154–158.

    Article  PubMed  Google Scholar 

  82. Inkster B, Muglia P, Jain U, Kennedy JL . Linkage disequilibrium analysis of the dopamine beta-hydroxylase gene in persistent attention deficit hyperactivity disorder. Psychiatr Genet 2004; 14: 117–120.

    Article  PubMed  Google Scholar 

  83. Smith KM, Daly M, Fischer M, Yiannoutsos CT, Bauer L, Barkley R et al. Association of the dopamine beta hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 77–85.

    Article  Google Scholar 

  84. Zhang HB, Wang YF, Li J, Wang B, Yang L . Association of dopamine beta-hydroxylase polymorphism with attention deficit hyperactivity disorder in children. Beijing Da Xue Xue Bao 2004; 36: 290–293.

    CAS  PubMed  Google Scholar 

  85. Zhang HB, Wang YF, Li J, Wang B, Yang L . Association between dopamine beta hydroxylase gene and attention deficit hyperactivity disorder complicated with disruptive behavior disorder. Zhonghua ErKeZa Zhi 2005; 43: 26–30.

    Google Scholar 

  86. Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, Zohar A, Gritsenko I, Nemanov L, Ebstein RP . Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 1999; 88: 497–502.

    Article  CAS  PubMed  Google Scholar 

  87. Qian Q, Wang Y, Zhou R, Li J, Wang B, Glatt S, Faraone SV . Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet B Neuropsychiatr Genet 2003; 118: 103–109.

    Article  Google Scholar 

  88. Thapar A, Langley K, Fowler T, Rice F, Turic D, Whittinger N et al. Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2005; 62: 1275–1278.

    Article  CAS  PubMed  Google Scholar 

  89. Curran S, Purcell S, Craig I, Asherson P, Sham P . The serotonin transporter gene as a QTL for ADHD. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 42–47.

    Article  Google Scholar 

  90. Kent L, Doerry U, Hardy E, Parmar R, Gingell K, Hawi Z et al. Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. MolPsychiatry 2002; 7: 908–912.

    CAS  Google Scholar 

  91. Li J, Wang Y, Qian Q, Wang B, Zhou R . Association of 5-HT(2A) receptor polymorphism and attention deficit hyperactivity disorder in children. Zhonghua Yi Xue Za Zhi 2002; 82: 1173–1176.

    CAS  PubMed  Google Scholar 

  92. Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. MolPsychiatry 2002; 7: 718–725.

    CAS  Google Scholar 

  93. Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. MolPsychiatry 2003; 8: 98–102.

    CAS  Google Scholar 

  94. Li J, Wang Y, Zhou R, Zhang H, Yang L, Wang B et al. Serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 59–63.

    Article  Google Scholar 

  95. Li J, Wang YF, Zhou RL, Zhang HB, Wang B, Yang L . Association between serotonin 2C gene polymorphisms and attention deficit hyperactivity disorder comorbid or not comorbid with learning disorder. Beijing Da Xue Xue Bao 2004; 36: 366–369.

    CAS  PubMed  Google Scholar 

  96. Li D, Sham PC, Owen MJ, He L . Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006; 15: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The IMAGE project is a multisite, international effort supported by NIH Grant R01MH62873 to SV Faraone. Site Principal Investigators are Philip Asherson, Tobias Banaschewski, Jan Buitelaar, Richard P Ebstein, Stephen V Faraone, Michael Gill, Ana Miranda, Robert D Oades, Herbert Roeyers, Aribert Rothenberger, Joseph Sergeant, Edmund Sonuga-Barke, and Hans-Christoph Steinhausen. Senior co-investigators are Margaret Thompson, Pak Sham, Peter McGuffin, Robert Plomin, Ian Craig and Eric Taylor. Chief Investigators at each site are Rafaela Marco, Nanda Rommelse, Fernando Mulas, Wai Chen, Henrik Uebel, Hanna Christiansen, U Mueller, Cathelijne Buschgens, Barbara Franke, Lamprini Psychogiou. Other investigators are Marieke Altink, Ellen Fliers, Ruud Minderaa and Alysa Doyle. We thank all the families who kindly participated in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Asherson.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brookes, K., Xu, X., Chen, W. et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11, 934–953 (2006). https://doi.org/10.1038/sj.mp.4001869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001869

Keywords

This article is cited by

Search

Quick links