Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease

Abstract

High fat diets and sedentary lifestyles are becoming major concerns for Western countries. They have led to a growing incidence of obesity, dyslipidemia, high blood pressure, and a condition known as the insulin-resistance syndrome or metabolic syndrome. These health conditions are well known to develop along with, or be precursors to atherosclerosis, cardiovascular disease, and diabetes. Recent studies have found that most of these disorders can also be linked to an increased risk of Alzheimer's disease (AD). To complicate matters, possession of one or more apolipoprotein E ɛ4 (APOE ɛ4) alleles further increases the risk or severity of many of these conditions, including AD. ApoE has roles in cholesterol metabolism and Aβ clearance, both of which are thought to be significant in AD pathogenesis. The apparent inadequacies of ApoE ɛ4 in these roles may explain the increased risk of AD in subjects carrying one or more APOE ɛ4 alleles. This review describes some of the physiological and biochemical changes that the above conditions cause, and how they are related to the risk of AD. A diversity of topics is covered, including cholesterol metabolism, glucose regulation, diabetes, insulin, ApoE function, amyloid precursor protein metabolism, and in particular their relevance to AD. It can be seen that abnormal lipid, cholesterol and glucose metabolism are consistently indicated as central in the pathophysiology, and possibly the pathogenesis of AD. As diagnosis of mild cognitive impairment and early AD are becoming more reliable, and as evidence is accumulating that health conditions such as diabetes, obesity, and coronary artery disease are risk factors for AD, appropriate changes to diets and lifestyles will likely reduce AD risk, and also improve the prognosis for people already suffering from such conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Post SG . Future scenarios for the prevention and delay of Alzheimer disease onset in high-risk groups. An ethical perspective. Am J Prev Med 1999; 16: 105–110.

    CAS  PubMed  Google Scholar 

  2. Aged and Community Care Division. Department of Health & Family Services: Canberra, 1998 p. 81.

  3. Arias E, Smith BL . Deaths: preliminary data for 2001. Natl Vital Stat Rep 2003; 51: 1–44.

    PubMed  Google Scholar 

  4. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ et al. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 1989; 262: 2551–2556.

    CAS  PubMed  Google Scholar 

  5. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM . Clinical diagnosis of Alzheimer's disease. Neurology 1984; 34: 939–944.

    CAS  PubMed  Google Scholar 

  6. Mega MS, Cummings JL, Fiorello T, Gornbein J . The spectrum of behavioural changes in Alzheimer's disease. Neurology 1996; 46: 130–135.

    CAS  PubMed  Google Scholar 

  7. Gilman S . Alzheimer's disease. Perspect Biol Med 1997; 40: 230–245.

    CAS  PubMed  Google Scholar 

  8. Rubinsztein DC . The genetics of Alzheimer's disease. Prog Neurobiol 1997; 52: 447–454.

    CAS  PubMed  Google Scholar 

  9. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992; 360: 672–674.

    CAS  PubMed  Google Scholar 

  10. Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras P et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3. Nat Genet 1992; 2: 335–339.

    CAS  PubMed  Google Scholar 

  11. Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA et al. Alzheimer's disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 1996; 5: 985–988.

    CAS  PubMed  Google Scholar 

  12. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375: 754–760.

    CAS  PubMed  Google Scholar 

  13. Kwok JB, Taddei K, Hallupp M, Fisher C, Brooks WS, Broe GA et al. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. NeuroReport 1997; 8: 1537–1542.

    CAS  PubMed  Google Scholar 

  14. Taddei K, Kwok JB, Kril JJ, Halliday GM, Creasey H, Hallupp M et al. Two novel presenilin-1 mutations (Ser169Leu and Pro436Gln) associated with very early onset Alzheimer's disease. NeuroReport 1998; 9: 3335–3339.

    CAS  PubMed  Google Scholar 

  15. Lendon CL, Ashall F, Goate AM . Exploring the etiology of Alzheimer disease using molecular genetics. JAMA 1997; 277: 825–831.

    CAS  PubMed  Google Scholar 

  16. Rocca WA, Amaducci LA, Schoenberg BS . Epidemiology of clinically diagnosed Alzheimer's disease. Ann Neurol 1986; 19: 415–424.

    CAS  PubMed  Google Scholar 

  17. Sparks DL, Hunsaker JC, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR . Cortical senile plaques in coronary artery disease, aging and Alzheimer's disease. Neurobiol Aging 1990; 11: 601–607.

    CAS  PubMed  Google Scholar 

  18. Elias MF, Elias PK, Sullivan LM, Wolf PA, D'Agostino RB . Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 2003; 27: 260–268.

    CAS  PubMed  Google Scholar 

  19. Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I . An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 2003; 163: 1524–1528.

    PubMed  Google Scholar 

  20. Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R . Diabetes mellitus and the risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001; 154: 635–641.

    CAS  PubMed  Google Scholar 

  21. Stewart R, Liolitsa D . Type 2 diabetes, cognitive impairment and dementia. Diabet Med 1999; 16: 93–112.

    CAS  PubMed  Google Scholar 

  22. Sanchez L, Alvarez V, Gonzalez P, Gonzalez I, Alvarez R, Coto E . Variation in the LRP-associated protein gene (LRPAP1) is associated with late onset Alzheimer disease. Am J Med Genet 2001; 105: 76–78.

    CAS  PubMed  Google Scholar 

  23. Kamboh MI, Ferrell RE, Dekosky ST . Genetic association studies between Alzheimer's disease and two polymorphisms in the low density lipoprotein receptor related protein gene. Neurosci Lett 1998; 244: 65–68.

    CAS  PubMed  Google Scholar 

  24. Hatanaka Y, Kamino K, Fukuo K, Mitsuda N, Nishiwaki-Ueda Y, Sato N et al. Low density lipoprotein receptor-related protein gene polymorphisms and risk for late-onset Alzheimer's disease in a Japanese population. Clin Genet 2000; 58: 319–323.

    CAS  PubMed  Google Scholar 

  25. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 2000; 55: 1158–1166.

    CAS  PubMed  Google Scholar 

  26. Jellinger KA . Traumatic brain injury as a risk factor for Alzheimer's disease. J Neurol Neurosurg Psychiatry 2004; 75: 511–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Buckwalter JG, Sobel E, Dunn ME, Diz MM, Henderson VW . Gender differences on a brief measure of cognitive functioning in Alzheimer's disease. Arch Neurol 1993; 50: 757–760.

    CAS  PubMed  Google Scholar 

  28. Zhang MY, Katzman R, Salmon D, Jin H, Cai GJ, Wang ZY et al. The prevalence of dementia and Alzheimer's disease in Shanghai, China: impact of age, gender, and education. Ann Neurol 1990; 27: 428–437.

    CAS  PubMed  Google Scholar 

  29. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K . Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82: 4245–4249.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Glenner GG, Wong CW . Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Comm 1984; 120: 885–890.

    CAS  PubMed  Google Scholar 

  31. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325: 733–736.

    CAS  PubMed  Google Scholar 

  32. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992; 258: 126–129.

    CAS  PubMed  Google Scholar 

  33. Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ . Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 1992; 357: 500–503.

    CAS  PubMed  Google Scholar 

  34. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286: 735–741.

    CAS  PubMed  Google Scholar 

  35. Kimberley WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ . Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 2003; 100: 6382–6387.

    Google Scholar 

  36. Soriano S, Chyung AS, Chen X, Stokin GB, Lee VM, Koo EH . Expression of beta amyloid precursor protein-CD3 gamma chimeras to demonstrate the selective generation of amyloid beta (1–40) and amyloid beta (1–42) peptides within secretory and endocytic compartments. J Biol Chem 1999; 274: 32295–32300.

    CAS  PubMed  Google Scholar 

  37. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999; 46 (6): 860–866.

    CAS  PubMed  Google Scholar 

  38. Miklossy J, Taddei K, Martins R, Escher G, Kraftsik R, Pillevuit O et al. Alzheimer disease: curly fibers and tangles in organs other than brain. J Neuropathol Exp Neurol 1999; 58: 803–814.

    CAS  PubMed  Google Scholar 

  39. Sparks DL, Martin TA, Gross DR, Hunsaker JC . Link between heart disease, cholesterol, and Alzheimer's disease: a review. Microsc Res Tech 2000; 50: 287–290.

    CAS  PubMed  Google Scholar 

  40. Honig LS, Kukull W, Mayeux R . Atherosclerosis and AD: analysis of data from the US National Alzheimer's Coordinating Center. Neurology 2005; 64: 494–500.

    PubMed  Google Scholar 

  41. Grant WB . Dietary links to Alzheimer's disease. Alz Dis Rev 1997; 2: 42–55.

    CAS  Google Scholar 

  42. Roher AE, Kuo YM, Kokjohn KM, Emmerling MR, Gracon S . Amyloid and lipids in the pathology of Alzheimer's disease. Amyloid 1999; 6: 136–145.

    CAS  PubMed  Google Scholar 

  43. Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D et al. Elevated low density lipoprotein in Alzheimer's disease correlates with brain abeta1–42 levels. Biochem Biophys Res Comm 1998; 252: 711–715.

    CAS  PubMed  Google Scholar 

  44. Merched A, Xia Y, Visvikis S, Serot JM, Siest G . Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer's disease. Neurobiol Aging 2000; 21: 27–30.

    CAS  PubMed  Google Scholar 

  45. Kazi D, Farmer JA . Raising high-density lipoprotein cholesterol: innovative strategies against an old adversary. Curr Atheroscler Rep 2005; 7: 88–94.

    CAS  PubMed  Google Scholar 

  46. Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M et al. A seed for Alzheimer amyloid in the brain. J Neurosci 2004; 24: 4894–4902.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Burns MP, Noble WJ, Olm V, Gaynor K, Casey E, LaFrancois J et al. Co-localization of cholesterol, apolipoprotein E and fibrillar abeta in amyloid plaques. Brain Res Mol Brain Res 2003; 100: 119–125.

    Google Scholar 

  48. Bieschke J, Zhang Q, Powers ET, Lerner RA, Kelly JW . Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 2005; 44: 4977–4983.

    CAS  PubMed  Google Scholar 

  49. Wolozin B, Brown J, Theisler C, Silberman S . The cellular biochemistry of cholesterol and statins: insights into the pathophysiology and therapy of Alzheimer's disease. CNS Drug Rev 2004; 10: 127–146.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Papassotiropoulos A, Lutjohann D, Bagli M, Locatelli S, Jessen F, Buschfort R et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 2002; 36: 27–32.

    CAS  PubMed  Google Scholar 

  51. Schonknecht P, Lutjohann D, Pantel J, Bardenheuer H, Hartmann T, von Bergmann K et al. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer's disease compared to healthy controls. Neurosci Lett 2002; 32: 83–85.

    Google Scholar 

  52. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD . Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41: 195–198.

    CAS  PubMed  Google Scholar 

  53. Papassotiropoulos A, Lutjohann D, Bagli M, Locatelli M, Jessen F, Rao ML et al. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer's disease. NeuroReport 2000; 11: 1959–1962.

    CAS  PubMed  Google Scholar 

  54. Chalmers KA, Culpan D, Kehoe PG, Wilcock GK, Hughes A, Love S . Apo E promoter, ACE1 and CYP46 polymorphisms and beta-amyloid in Alzheimer's disease. NeuroReport 2004; 15: 95–98.

    CAS  PubMed  Google Scholar 

  55. Johansson A, Katzov H, Zetterberg H, Feuk L, Johansson B, Bogdanovic N et al. Variants of CYP46A1 may interact with age and APOE to influence CSF Abeta42 levels in Alzheimer's disease. Hum Genet 2004; 114: 581–587.

    CAS  PubMed  Google Scholar 

  56. Desai P, DeKosky ST, Kamboh MI . Genetic variation in the cholesterol 24-hydroxylase (CYP46) gene and the risk of Alzheimer's disease. Neurosci Lett 2002; 328: 9–12.

    CAS  PubMed  Google Scholar 

  57. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41: 195–198.

    CAS  PubMed  Google Scholar 

  58. Dean M, Hamon Y, Chimini G . The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001; 42: 1007–1017.

    CAS  PubMed  Google Scholar 

  59. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001; 294: 1354–1357.

    CAS  PubMed  Google Scholar 

  60. Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA et al. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. J Biol Chem 2003; 278: 13244–13256.

    CAS  PubMed  Google Scholar 

  61. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 2004; 279: 40987–40993.

    CAS  PubMed  Google Scholar 

  62. Wollmer MA, Streffer JR, Lutjohann D, Tsolaki M, Iakovidou V, Hegi T et al. ABCA 1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer's disease. Neurobiol Aging 2003; 24: 421–426.

    CAS  PubMed  Google Scholar 

  63. Sundqvist A, Ericsson J . Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci USA 2003; 100: 13833–13838.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shimano H . Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001; 40: 439–452.

    CAS  PubMed  Google Scholar 

  65. Spell C, Kolsch H, Lutjohann D, Kerksiek A, Hentschel F, Damian M et al. SREBP-1a polymorphism influences the risk of Alzheimer's disease in carriers of the apoE4 allele. Dement Geriatr Cogn Disord 2004; 18: 245–249.

    CAS  PubMed  Google Scholar 

  66. Austen BM, Sidera C, Liu C, Frears E . The role of intracellular cholesterol on the processing of the β-amyloid precursor protein. J Nutr Health Aging 2003; 7: 31–36.

    CAS  PubMed  Google Scholar 

  67. Ehehalt R, Keller P, Haass C, Thiele C, Simons K . Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003; 160: 113–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N et al. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279: 44945–44954.

    CAS  PubMed  Google Scholar 

  69. Bodovitz S, Klein WL . Cholesterol modulates alpha secretase cleavage of amyloid precursor protein. J Biol Chem 1996; 271: 4436–4440.

    CAS  PubMed  Google Scholar 

  70. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K . Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998; 95: 6460–6464.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F . Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci USA 2001; 98: 5815–5820.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wahrle S, Das P, Nyborg AC, Mclendon C, Shoji M, Kawarabayashi T et al. Cholesterol dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 2002; 9: 11–23.

    CAS  PubMed  Google Scholar 

  73. Racchi M, Baetta R, Salvietti N, Ianna P, Franceschini G, Paoletti R et al. Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J 1997; 322: 893–898.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Galbete JL, Martin TR, Peressini E, Modena P, Bianchi R, Forloni G . Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J 2000; 348: 307–313.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 2004; 167: 953–960.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE et al. LDL receptor related protein, a multifunctional ApoE receptor binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 1995; 82: 331–340.

    CAS  PubMed  Google Scholar 

  77. Zerbinatti CV, Bu G . LRP and Alzheimer's disease. Rev Neurosci 2005; 16: 123–135.

    CAS  PubMed  Google Scholar 

  78. von Arnim CA, Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM et al. The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 2005; 280: 17777–17785.

    CAS  PubMed  Google Scholar 

  79. Lleo A, Waldron E, von Arnim CA, Herl L, Tangredi MM, Peltan ID et al. Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase. J Biol Chem 2005; 280: 27303–27309.

    CAS  PubMed  Google Scholar 

  80. Grimm MOW, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 2005; 7: 1118–1123.

    CAS  PubMed  Google Scholar 

  81. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci USA 2004; 101: 2070–2075.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson J-A . Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci USA 2002; 99: 13878–13883.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun Y, Yao J, Kim TW, Tall AR . Expression of liver X receptor target genes decreases cellular amyloid β peptide secretion. J Biol Chem 2003; 278: 27688–27694.

    CAS  PubMed  Google Scholar 

  84. Miyazaki A, Sakai M, Sakamoto Y, Horiuchi S . Acyl-coenzyme A: cholesterol acyltransferase inhibitors for controlling hypercholesterolemia and atherosclerosis. Curr Opin Investig Drugs 2003; 4: 1095–1099.

    CAS  PubMed  Google Scholar 

  85. Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT et al. Acyl-coenzyme A:cholesterol acyltransferase modulates the generation of the amyloid β peptide. Nat Cell Biol 2001; 3: 905–912.

    CAS  PubMed  Google Scholar 

  86. Puglielli L, Ellis BC, Ingano LA, Kovacs DM . Role of acyl-coenzyme A:cholesterol acyltransferase activity in the processing of the amyloid precursor protein. J Mol Neurosci 2004; 24: 93–96.

    CAS  PubMed  Google Scholar 

  87. Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A et al. The ACAT inhibitor CP-113, 818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 2004; 44: 227–238.

    CAS  PubMed  Google Scholar 

  88. Wollmer MA, Streffer JR, Tsolaki M, Grimaldi LM, Lutjohann D, Thal D et al. Genetic association of acyl-conenzyme A:cholesterol acyltransferase with cerebrospinal fluid cholesterol levels, brain amyloid load, and the risk for Alzheimer's disease. Mol Psychiatry 2003; 8: 635–638.

    CAS  PubMed  Google Scholar 

  89. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA . Statins and the risk of dementia. Lancet 2000; 356: 1627–1631.

    CAS  PubMed  Google Scholar 

  90. Wolozin B, Kellman W, Rousseau P, Celesia GG, Siegel G . Decreased prevalence of Alzheimer's disease associated with 3-hydroxy3methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57: 1439–1443.

    CAS  PubMed  Google Scholar 

  91. Austen B, Christodoulou G, Terry JE . Relation between cholesterol levels, statins and Alzheimer's disease in the human population. J Nutr Health Aging 2002; 6: 377–382.

    CAS  PubMed  Google Scholar 

  92. Moghadasian MH . Clinical pharmacology of 3-hydroxy-3methylglutaryl coenyzme A reductase inhibitors. Life Sci 1999; 65: 1329–1337.

    CAS  PubMed  Google Scholar 

  93. Park I-H, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J et al. Lovastatin enhances Aβ production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 2003; 24: 637–643.

    CAS  PubMed  Google Scholar 

  94. Petanceska SS, DeRosa S, Olm V, Diaz N, Sharma A, Thomas-Bryant T et al. Statin therapy for Alzheimer's disease: will it work? J Mol Neurosci 2002; 19: 155–161.

    CAS  PubMed  Google Scholar 

  95. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98: 5856–5861.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoglund K, Thelen KM, Syversen S, Sjogren M, von Bergmann K, Wallin A et al. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2005; 19: 256–265.

    CAS  PubMed  Google Scholar 

  97. Ledesma MD, Dotti CG . The conflicting role of brain cholesterol in Alzheimer's disease: lessons from the brain plasminogen system. Biochem Soc Symp 2005; 72: 129–138.

    CAS  Google Scholar 

  98. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 2005; 57: 789–794.

    PubMed  Google Scholar 

  99. Poirier J . Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer's disease. Neurobiol Aging 2005; 26: 355–361.

    CAS  PubMed  Google Scholar 

  100. Baum L, Chen L, Masliah E, Chan YS, Ng HK, Pang CP . Lipoprotein lipase mutations and Alzheimer's disease. Am J Med Genet 1999; 88: 136–139.

    CAS  PubMed  Google Scholar 

  101. Verd JC, Peris C, Alegret M, Diaz C, Hernandez G, Vasquez M et al. Different effect of simvastatin and atorvastatin on key enzymes involved in VLDL synthesis and catabolism in high fat/cholesterol fed rabbits. Br J Pharmacol 1999; 127: 1479–1485.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Schoonjans K, Peinado-Onsurbe J, Fruchart JC, Tailleux A, Fievet C, Auwerx J . 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglycerides levels through modulation of apolipoprotein C-III and lipoprotein lipase. FEBS Lett 1999; 452: 160–164.

    CAS  PubMed  Google Scholar 

  103. Hendrie HC, Ogunniyi A, Hall KS, Baiyewu O, Unverzagt FW, Gureje O et al. Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA 2001; 285: 739–747.

    CAS  PubMed  Google Scholar 

  104. Graves AB, Rajaram L, Bowen JD, McCormick WC, McCurry SM, Larson EB . Cognitive decline and Japanese culture in a cohort of older Japanese Americans in King County, WA: the Kane Project. J Gerontol B Psychol Sci Soc Sci 1999; 54: s154–s161.

    CAS  PubMed  Google Scholar 

  105. Engelhart MJ, Geerlings MI, Ruitenberg A, Van Swieten JC, Hofman A, Witteman JC et al. Diet and risk of dementia: does fat matter? The Rotterdam Study. Neurology 2002; 59: 1915–1921.

    CAS  PubMed  Google Scholar 

  106. Wu CW, Liao PC, Lin C, Kuo CJ, Chen ST, Chen HI et al. Brain region dependent increases in β-amyloid and apolipoprotein E levels in hypercholesterolemic rabbits. J Neural Transm 2003; 110: 641–649.

    CAS  PubMed  Google Scholar 

  107. Sparks DL, Martins RN, Martin T . Rationale for the AD cholesterol lowering treatment trial and sex related differences in β-amyloid accumulation in the brains of spontaneously hypercholesterolemic Watanabe rabbits. Ann NY Acad Sci 2002; 977: 356–366.

    CAS  PubMed  Google Scholar 

  108. Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000; 7: 321–331.

    CAS  PubMed  Google Scholar 

  109. Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N et al. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J 2005; 19: 659–661.

    PubMed  Google Scholar 

  110. Lutjohann D, Stroick M, Bertsch T, Kuhl S, Lindenthal B, Thelen K et al. High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs. Steroids 2004; 69: 431–438.

    CAS  PubMed  Google Scholar 

  111. Greenwood C, Winocur G . Learning and memory impairment in rats fed a high saturated fat diet. Behav Neural Biol 1990; 53: 74–87.

    CAS  PubMed  Google Scholar 

  112. Greenwood C, Winocur G . Cognitive performance in rats fed high-fat diets: a specific effect of saturated fatty acid intake. Behav Neurosci 1996; 110: 451–459.

    CAS  PubMed  Google Scholar 

  113. Winocur G, Greenwood C . High fat diets impair conditional discrimination learning in rats. Psychobiology 1993; 22: 286–292.

    Google Scholar 

  114. Winocur G, Greenwood C . The effects of high fat diets and environmental influences on cognitive performance in rats. Behav Brain Res 1999; 101: 153–161.

    CAS  PubMed  Google Scholar 

  115. Elias MF, Elias PK, Sullivan LM, Wolf PA, D'Agostino RB . Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 2003; 27: 260–268.

    CAS  PubMed  Google Scholar 

  116. Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I . An 18 year follow up of overweight and risk of Alzheimer disease. Arch Intern Med 2003; 163: 1524–1528.

    PubMed  Google Scholar 

  117. Haan MN, Wallace R . Can dementia be prevented? Brain aging in a population-based context. Annu Rev Public Health 2004; 25: 1–24.

    PubMed  Google Scholar 

  118. Balakrishnan K, Verdile G, Mehta PD, Beilby J, Nolan D, Galvao DA et al. Plasma Aβ42 correlates positively with increased body fat in healthy individuals. J Alzheimer's Dis 2005; 8: 269–282.

    CAS  Google Scholar 

  119. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 2005; 62: 1556–1560.

    PubMed  Google Scholar 

  120. Clandinin MT, Cheema S, Field CJ, Baracos VE . Dietary lipids influence insulin action. Ann NY Acad Sci 1993; 683: 151–163.

    CAS  PubMed  Google Scholar 

  121. Storlien LH, Kriketos AD, Jenkins AB, Baur LA, Pan DA, Tapsell LC et al. Does dietary fat influence insulin action? Ann NY Acad Sci 1997; 827: 287–301.

    CAS  PubMed  Google Scholar 

  122. Berdanier CD . The BHE rat: an animal model for the study of non-insulin-dependent diabetes mellitus. FASEB J 1991; 5: 2139–2144.

    CAS  PubMed  Google Scholar 

  123. Manco M, Calvani C, Mingrone G . Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes metab 2004; 6: 402–413.

    CAS  PubMed  Google Scholar 

  124. Holness MJ, Greenwood GK, Smith ND, Sugden MC . Diabetogenic impact of long-chain omega-3 fatty acids on pancreatic beta-cell function and the regulation of endogenous glucose production. Endocrinology 2003; 144: 3958–3968.

    CAS  PubMed  Google Scholar 

  125. Marshall JA, Bessesen DH, Hamman RF . High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Louis Valley Diabetes Study. Diabetologia 1997; 40: 430–438.

    CAS  PubMed  Google Scholar 

  126. Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM . Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 1996; 39: 1392–1397.

    CAS  PubMed  Google Scholar 

  127. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC . Increased risk of type 2 diabetes in Alzheimer's disease. Diabetes 2004; 53: 474–481.

    CAS  PubMed  Google Scholar 

  128. Bruce DG, Casey GP, Grange V, Clarnette RC, Almeida OP, Foster JK et al. Cognitive impairment, physical disability and depressive symptoms in older diabetic patients: the Fremantle cognition in diabetes study. Diabetes Res Clin Pract 2003; 61: 59–67.

    PubMed  Google Scholar 

  129. Kuusisto J, Koivisto K, Mykkanen L, Helkala EL, Vanhanen M, Hanninen T et al. Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. Br Med J 1997; 315: 1045–1049.

    CAS  Google Scholar 

  130. Stewart R, Liolitsa D . Type 2 diabetes, cognitive impairment and dementia. Diabet Med 1999; 16: 93–112.

    CAS  PubMed  Google Scholar 

  131. MacKnight C, Rockwood K, Awalt E, McDowell I . Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement Geriatr Cogn Disord 2002; 14: 77–83.

    PubMed  Google Scholar 

  132. Hassing LB, Johansson B, Nilsson SE, Berg S, Pedersen NL, Gatz M et al. Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer's disease: a population based study of the oldest old. Int Psychogeriatr 2002; 14: 239–248.

    PubMed  Google Scholar 

  133. Martins IJ, Redgrave TG . Obesity and postprandial lipid metabolism. Feast or famine? J Nutr Biochem 2004; 15: 130–141.

    CAS  PubMed  Google Scholar 

  134. Pihlajamaki J, Gylling H, Miettinen TA, Laakso M . Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res 2004; 45: 507–512.

    PubMed  Google Scholar 

  135. Simonen PP, Gylling HK, Miettinen TA . Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care 2002; 25: 1511–1515.

    CAS  PubMed  Google Scholar 

  136. Peila R, Rodriguez BL, Launer LJ . Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 2002; 51: 1256–1262.

    CAS  PubMed  Google Scholar 

  137. Messier C . Diabetes, Alzheimer's disease and apolipoprotein genotype. Exp Gerontol 2003; 38: 941–946.

    CAS  PubMed  Google Scholar 

  138. Kuhl DE, Metter EJ, Riege WH . Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer's Disease. In: Sokoloff L (ed). Brain Imaging and Brain Function. Raven Press: New York, 1985.

    Google Scholar 

  139. Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L et al. Positron emission tomography in Alzheimer's disease. Neurology 1986; 36: 879–887.

    CAS  PubMed  Google Scholar 

  140. Herholz K . PET studies in dementia. Ann Nucl Med 2003; 17: 79–89.

    PubMed  Google Scholar 

  141. Craft S, Zallen G, Baker LD . Glucose and memory in mild senile dementia of the Alzheimer type. J Clin Exp Neuropsychol 1992; 14: 253–267.

    CAS  PubMed  Google Scholar 

  142. Bucht G, Adolfsson R, Lithner F, Winblad B . Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 1983; 213: 387–392.

    CAS  PubMed  Google Scholar 

  143. Fujisawa Y, Sasaki K, Akiyama K . Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiat 1991; 30: 1219–1228.

    CAS  PubMed  Google Scholar 

  144. Kilander L, Boberg M, Lithell H . Peripheral glucose metabolism and insulin sensitivity in Alzheimer's disease. Acta Neurol Scand 1993; 87: 294–298.

    CAS  PubMed  Google Scholar 

  145. Winograd CH, Jacobson DH, Minkoff JR, Peabody CA, Taylor BS, Widrow L et al. Blood glucose and insulin response in patients with senile dementia of the Alzheimer's type. Biol Psychiat 1991; 30: 507–511.

    CAS  PubMed  Google Scholar 

  146. Sims NR, Finegan JM, Blass JP . Altered metabolic properties of cultured skin fibroblasts in Alzheimer's disease. Ann Neurol 1987; 21: 451–457.

    CAS  PubMed  Google Scholar 

  147. Hoyer S . Brain glucose and energy metabolism abnormalities in sporadic Alzheimer's disease. Causes and consequences: an update. Exp Gerontol 2000; 35: 1363–1372.

    CAS  PubMed  Google Scholar 

  148. Craft S, Dagogo-Jack SE, Wiethop BV, Murphy C, Nevins RT, Fleischman S et al. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 1993; 207: 926–940.

    Google Scholar 

  149. Manning CA, Ragozzino ME, Gold PE . Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer's type. Neurobiol Aging 1993; 14: 523–528.

    CAS  PubMed  Google Scholar 

  150. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 2005; 102: 8299–8302.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Boyt AA, Taddei TK, Hallmeyer J, Helmerhorst E, Gandy SE, Craft S et al. The effect of insulin and glucose on the plasma concentration of Alzheimer's amyloid precursor protein. Neuroscience 2000; 95: 727–734.

    CAS  PubMed  Google Scholar 

  152. Yamagishi S, Nakamura K, Inoue H, Kikuchi S, Takeuchi M . Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease. Med Hypotheses 2005; 64: 1205–1207.

    CAS  PubMed  Google Scholar 

  153. Zhao WQ, Alkon DL . Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001; 177: 125–134.

    CAS  PubMed  Google Scholar 

  154. Edbauer D, Willem M, Lammich S, Steiner H, Haass C . Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J Biol Chem 2002; 277: 13389–13393.

    CAS  PubMed  Google Scholar 

  155. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100: 4162–4167.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 2005; 62: 1539–1544.

    PubMed  Google Scholar 

  157. Luchsinger JA, Tang MX, Shea S, Mayeux R . Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004; 63: 1187–1192.

    PubMed  Google Scholar 

  158. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J 2004; 18: 902–904.

    CAS  PubMed  Google Scholar 

  159. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R . Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002; 22: RC221.

    PubMed  PubMed Central  Google Scholar 

  160. Xie L, Martins RN, Racchi M, Craft S, Helmerhorst E . Beta amyloid antagonizes insulin promoted secretion of the amyloid precursor protein. J Alzheimer's Dis 2002; 4: 369–374.

    Google Scholar 

  161. Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M . Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 2000; 14: 1015–1022.

    CAS  PubMed  Google Scholar 

  162. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001; 21: 2561–2570.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Helbecque N, Abderrahamani A, Meylan L, Riederer B, Mooser V, Miklossy J et al. Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer's disease. Mol Psychiatry 2003; 8: 413–422.

    CAS  PubMed  Google Scholar 

  164. Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C et al. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet 2000; 24: 291–295.

    CAS  PubMed  Google Scholar 

  165. De la Monte SM, Wands JR . Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J Alzheimer's Dis 2005; 7: 45–61.

    CAS  Google Scholar 

  166. Bondy CA, Cheng CM . Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 2004; 490: 25–31.

    CAS  PubMed  Google Scholar 

  167. Dupont J, LeRoith D . Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. Horm Res 2001; 55 (Suppl 2): 22–26.

    CAS  PubMed  Google Scholar 

  168. Dore S, Kar S, Rowe W, Quirion R . Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 1997; 80: 1033–1040.

    CAS  PubMed  Google Scholar 

  169. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? J Alzheimer's Dis 2005; 7: 63–80.

    CAS  Google Scholar 

  170. Dore S, Kar S, Quirion R . Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci USA 1997; 94: 4772–4777.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zheng WH, Kar S, Dore S, Quirion R . Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. J Neural Transm Supp 2000; 60: 261–272.

    Google Scholar 

  172. Wei W, Wang X, Kusiak JW . Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem 2002; 277: 17649–17656.

    CAS  PubMed  Google Scholar 

  173. Wallace WC, Akar CA, Lyons WE, Kole HK, Egan JM, Wolozin B . Amyloid precursor protein requires the insulin signaling pathway for neurotrophic activity. Brain Res Mol Brain Res 1997; 52: 213–227.

    CAS  PubMed  Google Scholar 

  174. Rall SC, Weisgraber KH, Mahley RW . Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 1982; 257: 4171–4178.

    CAS  PubMed  Google Scholar 

  175. Mahley RW . Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–630.

    CAS  PubMed  Google Scholar 

  176. Martins RN, Clarnette R, Fisher C, Broe GA, Brooks WS, Montgomery P et al. Apo E genotypes in Australia: roles in early and late onset Alzheimer's disease and Down's syndrome. NeuroReport 1995; 6: 1513–1516.

    CAS  PubMed  Google Scholar 

  177. Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res 1982; 23: 911–914.

    CAS  PubMed  Google Scholar 

  178. Kamboh MI, Sepehrnia B, Ferrell RE . Genetic studies of human apolipoproteins. VI. Common polymorphism of apolipoprotein E in blacks. Dis Markers 1989; 7: 49–55.

    CAS  PubMed  Google Scholar 

  179. Gelernter J, Kranzler H, Lacobelle J . Population studies of polymorphisms at loci of neuropsychiatric interest (tryptophan hydroxylase (TPH), dopamine transporter protein (SLC6A3), D3 dopamine receptor (DRD3), apolipoprotein E (APOE), mu opioid receptor (OPRM1), and ciliary neurotrophic factor (CNTF)). Genomics 1998; 52: 289–297.

    CAS  PubMed  Google Scholar 

  180. Tsukamoto K, Watanabe T, Matsushima T, Kinoshita M, Kato H, Hashimoto Y et al. Determination by PCR-RFLP of apo E genotype in a Japanese population. J Lab Clin Med 1993; 121: 598–602.

    CAS  PubMed  Google Scholar 

  181. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC . Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 2002; 155: 487–495.

    PubMed  Google Scholar 

  182. Roheim PS, Carey M, Forte T, Vega GL . Apolipoproteins in human cerebrospinal fluid. Proc Natl Acad Sci USA 1979; 76: 4646–4649.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH . Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J Biol Chem 1987; 262: 14352–14360.

    CAS  PubMed  Google Scholar 

  184. Holtzman DM, Pitas RE, Kilbridge J, Nathan B, Mahley RW, Bu G et al. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA 1995; 92: 9480–9484.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW . Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 1987; 917: 148–161.

    CAS  PubMed  Google Scholar 

  186. Willnow TE . The low density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med 1999; 77: 306–315.

    CAS  PubMed  Google Scholar 

  187. Vance JE, Hayashi H, Karten B . Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 2005; 16: 193–212.

    CAS  PubMed  Google Scholar 

  188. Oner P, Bekpinar S, Oz B . Alterations in some lipid components and Ca2+ ATPase activity in brains of rats fed an atherogenic diet. Res Commun Chem Pathol Pharmacol 1991; 72: 337–345.

    CAS  PubMed  Google Scholar 

  189. Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R . A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 1997; 138: 877–889.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer's disease. Proc Natl Acad Sci USA 1993; 90: 1977–1981.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Schellenberg GD . Genetic dissection of Alzheimer's disease, a heterogeneous disorder. Proc Natl Acad Sci USA 1995; 92: 8552–8559.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Osuntokun BO, Sahota A, Ogunniyi AO, Gureje O, Baiyewu O, Adeyinka A et al. Lack of association between apolipoprotein E epsilon 4 and Alzheimer's disease in elderly Nigerians. Ann Neurol 1995; 38: 463–465.

    CAS  PubMed  Google Scholar 

  193. Hendrie HC, Ogunniyi A, Hall KS, Baiyewu O, Unverzagt FW, Gureje O et al. Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA 2001; 285: 739–747.

    CAS  PubMed  Google Scholar 

  194. Smith MA, Petot GJ, Perry G . Diet and oxidative stress: a novel synthesis of epidemiological data on Alzheimer's disease. J Alzheimer Dis 1999; 1: 203–206.

    CAS  Google Scholar 

  195. Petot GJ, Traore F, Debanne SM, Lerner AJ, Smyth KA, Friedland RP . Interactions of apolipoprotein E genotype and dietary fat intake of healthy older persons during mid-adult life. Metabolism 2003; 52: 279–281.

    CAS  PubMed  Google Scholar 

  196. Mulder M, Jansen JP, Janssen BJ, van de Berg WD, van der Boom H, Havekes LM et al. Low density lipoprotein receptor knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiol Dis 2004; 16: 212–219.

    CAS  PubMed  Google Scholar 

  197. Gordon I, Genis I, Grauer E, Sehayek E, Michaelson DM . Biochemical and cognitive studies of apolipoprotein E deficient mice. Mol Chem Neuropathol 1996; 1: 97–103.

    Google Scholar 

  198. Levi O, Jongen-Relo AL, Feldon J, Michaelson DM . Brain area- and isoform-specific inhibition of synaptic plasticity by apoE4. J Neurol Sci 2005; 229–230: 241–248.

    PubMed  Google Scholar 

  199. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE . Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994; 264: 850–852.

    CAS  PubMed  Google Scholar 

  200. Scott BL, Welch K, deSerrano V, Moss NC, Roses AD, Strittmatter WJ . Human apolipoprotein E accelerates microtubule polymerization in vitro. Neurosci Lett 1998; 245: 105–108.

    CAS  PubMed  Google Scholar 

  201. Nathan BP, Chang KC, Bellosta S, Brisch E, Ge N, Mahley RW et al. The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 1995; 270: 19791–19799.

    CAS  PubMed  Google Scholar 

  202. Sun Y, Wu S, Bu G, Onifade MK, Patel SN, LaDu MJ et al. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci 1998; 18: 3261–3272.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Poirier J, Hess M, May PC, Finch CE . Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 1991; 11: 97–106.

    CAS  PubMed  Google Scholar 

  204. Morris JC . The challenge of characterizing normal brain aging in relation to Alzheimer's disease. Neurobiol Aging 1997; 18: 388–389.

    CAS  PubMed  Google Scholar 

  205. Poirier J, Baccichet A, Dea D, Gauthier S . Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 1993; 55: 81–90.

    CAS  PubMed  Google Scholar 

  206. Irizarry MC, Deng A, Lleo A, Berezovska O, Von Arnim CA, Martin-Rehrmann M et al. Apolipoprotein E modulates γ-secretase cleavage of the amyloid precursor protein. J Neurochem 2004; 90: 1132–1143.

    CAS  PubMed  Google Scholar 

  207. Hass S, Fresser F, Kochl S, Beyreuther K, Utermann G, Baier G . Physical interaction of apo E with amyloid precursor protein independent of the amyloid abeta region in vitro. J Biol Chem 2001; 273: 13892–13897.

    Google Scholar 

  208. Hass S, Weidemann A, Utermann G, Baier G . Intracellular apolipoprotein E affects amyloid precursor protein processing and amyloid abeta production in COS-1 cells. Mol Genet Genomics 2001; 265: 791–800.

    CAS  PubMed  Google Scholar 

  209. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K . Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 1991; 541: 163–166.

    CAS  PubMed  Google Scholar 

  210. Wisniewski T, Frangione B . Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 1992; 135: 235–238.

    CAS  PubMed  Google Scholar 

  211. Naslund J, Thyberg J, Tjernberg LO, Wernstedt C, Karlstrom AR, Bogdanovic N et al. Characterization of stable complexes involving apo E and amyloid beta peptide in Alzheimer's disease brain. Neuron 1995; 15: 219–228.

    CAS  PubMed  Google Scholar 

  212. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 9649–9653.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gearing M, Mori H, Mirra SS . Abeta-peptide length and apolipoprotein E genotype in Alzheimer's disease. Ann Neurol 1996; 39: 395–399.

    CAS  PubMed  Google Scholar 

  214. Castano EM, Prelli F, Wisniewski T, Golabek A, Kumar RA, Soto C et al. Fibrillogenesis in Alzheimer's disease of amyloid β peptides and apolipoprotein E. Biochem J 1995; 306: 599–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M . Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform specific effects and implications for late onset Alzheimer's disease. Proc Natl Acad Sci USA 1993; 90: 8098–8102.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A et al. Apolipoprotein E associates with β amyloid peptide of Alzheimer's disease to form novel fibrils. J Clin Invest 1994; 94: 860–869.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE . Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 1994; 269: 23403–23406.

    CAS  PubMed  Google Scholar 

  218. LaDu MJ, Pederson TM, Frail DE, Reardon CA, Getz GS, Falduto MT . Purification of apolipoprotein E attenuates isoform-specific binding to beta-amyloid. J Biol Chem 1995; 270: 9039–9042.

    CAS  PubMed  Google Scholar 

  219. Yang DS, Smith JD, Zhou Z, Gandy SE, Martins RN . Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J Neurochem 1997; 68: 721–725.

    CAS  PubMed  Google Scholar 

  220. Zhou Z, Smith JD, Greengard P, Gandy SE . Alzheimer amyloid-β peptide forms denaturant-resistant complex with Type å3 but not å4 isoform of native apolipoprotein E. Mol Med 1996; 2: 175–180.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Jordan J, Galindo MF, Miller RJ, Reardon CA, Getz GS, LaDu MJ . Isoform-specific effect of apolipoprotein E on cell survival and β-amyloid induced toxicity in rat hippocampal pyramidal neuronal cultures. J Neurosci 1998; 18: 195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Yang DS, Small DH, Seydel U, Smith JD, Hallmayer J, Gandy SE et al. Apolipoprotein E promotes the binding and uptake of beta-amyloid into Chinese hamster ovary cells in an isoform-specific manner. Neuroscience 1999; 90: 1217–1226.

    CAS  PubMed  Google Scholar 

  223. Manelli AM, Stine WB, Van Eldick LJ, LaDu MJ . ApoE and Abeta1–42 interactions: effects of isoform and conformation on structure and function. J Mol Neurosci 2004; 23: 235–246.

    CAS  PubMed  Google Scholar 

  224. Hone E, Martins IJ, Jeoung M, Ji TH, Gandy S, Martins RN . Alzheimer's disease Aβ peptide modulates apoE isoform specific effects on receptor binding. J Alzheimers Dis 2005; 7: 303–314.

    CAS  PubMed  Google Scholar 

  225. Hone E, Martins IJ, Fonte J, Martins RN . Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J Alzheimer's Dis 2003; 5: 1–8.

    CAS  Google Scholar 

  226. Winkler K, Scharnagl H, Tisljar U, Hoschutzky H, Friedrich I, Hoffmann MM . Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. J Lipid Res 1999; 40: 447–455.

    CAS  PubMed  Google Scholar 

  227. Zlokovic BV . Clearing amyloid through the blood brain barrier. J Neurochem 2004; 89: 807–814.

    CAS  PubMed  Google Scholar 

  228. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 2005; 115: 3285–3290.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005; 11: 959–965.

    CAS  PubMed  Google Scholar 

  230. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 2892–2897.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Han X, Fagan AM, Cheng H, Morris JC, Xiong C, Holtzman DM . Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 2003; 54: 115–119.

    CAS  PubMed  Google Scholar 

  232. Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM . Novel role for apolipoprotein E in the central nervous system. J Biol Chem 2003; 278: 8043–8051.

    CAS  PubMed  Google Scholar 

  233. Mattson MP . Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res 2000; 886: 47–53.

    CAS  PubMed  Google Scholar 

  234. Brinton RD . A women's health issue: Alzheimer's disease and strategies for maintaining cognitive health. Int J Fertil Womens Med 1999; 44: 174–185.

    CAS  PubMed  Google Scholar 

  235. Grant WB, Campbell A, Itzhaki RF, Savory J . The significance of environmental factors in the etiology of Alzheimer's disease. J Alzheimer's Dis 2002; 4: 179–189.

    Google Scholar 

  236. Solfrizzi V, Panza F, Capurso A . The role of diet in cognitive decline. J Neural Transm 2003; 110: 95–110.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R N Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, I., Hone, E., Foster, J. et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry 11, 721–736 (2006). https://doi.org/10.1038/sj.mp.4001854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001854

Keywords

This article is cited by

Search

Quick links