Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The role of phospholipases A2 in schizophrenia

Abstract

A range of neurotransmitter systems have been implicated in the pathogenesis of schizophrenia based on the antidopaminergic activities of antipsychotic medications, and chemicals that can induce psychotic-like symptoms, such as ketamine or PCP. Such neurotransmitter systems often mediate their cellular response via G-protein-coupled release of arachidonic acid (AA) via the activation of phospholipases A2 (PLA2s). The interaction of three PLA2s are important for the regulation of the release of AA – phospholipase A2 Group 2 A, phospholipase A2 Group 4A and phospholipase A2 Group 6A. Gene variations of these three key enzymes have been associated with schizophrenia with conflicting results. Preclinical data suggest that the activity of these three enzymes are associated with monoaminergic neurotransmission, and may contribute to the differential efficacy of antipsychotic medications, as well as other biological changes thought to underlie schizophrenia, such as altered neurodevelopment and synaptic remodelling. We review the evidence and discuss the potential roles of these three key enzymes for schizophrenia with particular emphasis on published association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

AMPAR:

glutamate receptor

BanI :

PLA2G4A, rs10798059, intron one adenine/guanine variant

bp:

DNA base pairs

CDCV:

common disease common variant

CDRV:

common disease rare variant

CNS:

central nervous system

EFA:

essential fatty acids

G-proteins:

guanosine triphosphate binding proteins

GWL:

genomewide linkage studies

LD:

linkage disequilibrium

LTP:

long-term potentiation

mRNA:

messenger RNA

PLA2:

phospholipase A2

PLA2GIVA, PLA2G4A:

phospholipase A2 Group 4 A

PLA2GIIA, PLA2G2A:

phospholipase A2 Group 2 A

PLA2GVIA, PLA2G6A:

phospholipase A2 Group 6 A

Poly(A):

PLA2G4A promotor adenine repeat variant

PUFA:

polyunsaturated fatty acid

31P MRS:

31-phosphorus magnetic resonance imaging

RBC:

red blood cells

TDT:

transmission disequilibrium test

References

  1. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC . Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 1991; 353: 164–167.

    Article  PubMed  CAS  Google Scholar 

  2. Meiri KF, Saffell JL, Walsh FS, Doherty P . Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J Neurosci 1998; 18: 10429–10437.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Negre-Aminou P, Pfenninger KH . Arachidonic acid turnover and phospholipase A2 activity in neuronal growth cones. J Neurochem 1993; 60: 1126–1136.

    Article  PubMed  CAS  Google Scholar 

  4. St-Gelais F, Menard C, Congar P, Trudeau LE, Massicotte G . Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 2004; 14: 319–325.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia MC, Kim HY . Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997; 768: 43–48.

    Article  PubMed  CAS  Google Scholar 

  6. Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG et al. Arachidonic acid release from mammalian cells transfected with human groups IIA and X secreted phospholipase A(2) occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A(2)-alpha. J Biol Chem 2004; 279: 25024–25038.

    Article  PubMed  CAS  Google Scholar 

  7. Six DA, Dennis EA . The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochimica et Biophysica Acta 2000; 1488: 1–19.

    Article  PubMed  CAS  Google Scholar 

  8. Balsinde J, Dennis EA . Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 1997; 272: 16069–16072.

    Article  PubMed  CAS  Google Scholar 

  9. Winstead MV, Balsinde J, Dennis EA . Calcium-independent phospholipase A(2): structure and function. Biochimica et Biophysica Acta 2000; 1488: 28–39.

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu T, Wolfe LS . Arachidonic acid cascade and signal transduction. J Neurochem 1990; 55: 1–15.

    Article  PubMed  CAS  Google Scholar 

  11. Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE . A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 2003; 86: 980–991.

    Article  PubMed  CAS  Google Scholar 

  12. Yao JK, van Kammen DP . Red blood cell membrane dynamics in schizophrenia. I. Membrane fluidity. Schizophr Res 1994; 11: 209–216.

    Article  PubMed  CAS  Google Scholar 

  13. Farkas E, de Wilde MC, Kiliaan AJ, Meijer J, Keijser JN, Luiten PG . Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion. Brain Res 2002; 954: 32–41.

    Article  PubMed  CAS  Google Scholar 

  14. Clark JD, Milona N, Knopf JL . Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci USA 1990; 87: 7708–7712.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Murakami M, Kambe T, Shimbara S, Yamamoto S, Kuwata H, Kudo I . Functional association of type IIA secretory phospholipase A(2) with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway. J Biol Chem 1999; 274: 29927–29936.

    Article  PubMed  CAS  Google Scholar 

  16. Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA et al. The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem 1998; 273: 14411–14423.

    Article  PubMed  CAS  Google Scholar 

  17. Kuwata H, Yamamoto S, Miyazaki Y, Shimbara S, Nakatani Y, Suzuki H et al. Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. J Immunol 2000; 165: 4024–4031.

    Article  PubMed  CAS  Google Scholar 

  18. Han WK, Sapirstein A, Hung CC, Alessandrini A, Bonventre JV . Cross-talk between cytosolic phospholipase A2 alpha (cPLA2 alpha) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA2 regulates cPLA2 alpha activity that is responsible for arachidonic acid release. J Biol Chem 2003; 278: 24153–24163.

    Article  PubMed  CAS  Google Scholar 

  19. Bonventre JV, Huang Z, Taheri MR, O'Leary E, Li E, Moskowitz MA et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 1997; 390: 622–625.

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberger TA, Villacreses NE, Contreras MA, Bonventre JV, Rapoport SI . Brain lipid metabolism in the cPLA(2) knockout mouse. J Lipid Res 2003; 44: 109–117.

    Article  PubMed  CAS  Google Scholar 

  21. Balsinde J, Dennis EA . Function of calcium-independent phospholipase A2 in arachidonic acid metabolism in P388D1 macrophages. Adv Exp Med Biol 1997; 407: 99–103.

    Article  PubMed  CAS  Google Scholar 

  22. Atsumi G, Murakami M, Kojima K, Hadano A, Tajima M, Kudo I . Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A2alpha inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J Biol Chem 2000; 275: 18248–18258.

    Article  PubMed  CAS  Google Scholar 

  23. Balsinde J, Balboa MA, Dennis EA . Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J Biol Chem 1997; 272: 29317–29321.

    Article  PubMed  CAS  Google Scholar 

  24. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  PubMed  CAS  Google Scholar 

  25. Murray RM, Lewis SW . Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 1987; 295: 681–682.

    Article  CAS  Google Scholar 

  26. Gilman AG . G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  27. Clapham DE, Neer EJ . G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 1997; 37: 167–203.

    Article  PubMed  CAS  Google Scholar 

  28. Balsinde J, Balboa MA, Dennis EA . Functional coupling between secretory phospholipase A2 and cyclooxygenase-2 and its regulation by cytosolic group IV phospholipase A2. Proc Natl Acad Sci USA 1998; 95: 7951–7956.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Murakami M, Nakatani Y, Kuwata H, Kudo I . Cellular components that functionally interact with signaling phospholipase A(2)s. Biochim Biophys Acta 2000; 1488: 159–166.

    Article  PubMed  CAS  Google Scholar 

  30. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 1995; 270: 15693–15701.

    Article  PubMed  CAS  Google Scholar 

  31. Carman CV, Lisanti MP, Benovic JL . Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem 1999; 274: 8858–8864.

    Article  PubMed  CAS  Google Scholar 

  32. Wolf MJ, Izumi Y, Zorumski CF, Gross RW . Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 1995; 377: 358–362.

    Article  PubMed  CAS  Google Scholar 

  33. Barbour B, Szatkowski M, Ingledew N, Attwell D . Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 1989; 342: 918–920.

    Article  PubMed  CAS  Google Scholar 

  34. Bernard J, Chabot C, Gagne J, Baudry M, Massicotte G . Melittin increases AMPA receptor affinity in rat brain synaptoneurosomes. Brain Res 1995; 671: 195–200.

    Article  PubMed  CAS  Google Scholar 

  35. Gaudreault SB, Chabot C, Gratton JP, Poirier J . The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J Biol Chem 2004; 279: 356–362.

    Article  PubMed  CAS  Google Scholar 

  36. Tournois C, Mutel V, Manivet P, Launay JM, Kellermann O . Cross-talk between 5-hydroxytryptamine receptors in a serotonergic cell line. Involvement of arachidonic acid metabolism. J Biol Chem 1998; 273: 17498–17503.

    Article  PubMed  CAS  Google Scholar 

  37. Schaeffer EL, Gattaz WF . Inhibition of calcium-independent phospholipase A(2) activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berlin) 2005; 181: 392–400.

    Article  CAS  Google Scholar 

  38. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM . Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 2000; 97: 11280–11285.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Shinzawa K, Tsujimoto Y . PLA2 activity is required for nuclear shrinkage in caspase-independent cell death. J Cell Biol 2003; 163: 1219–1230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB . I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 2002; 196: 655–665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003; 113: 717–730.

    Article  PubMed  CAS  Google Scholar 

  42. Clemens JA, Stephenson DT, Smalstig EB, Roberts EF, Johnstone EM, Sharp JD et al. Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 1996; 27: 527–535.

    Article  PubMed  CAS  Google Scholar 

  43. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J et al. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 1999; 27: 110–128.

    Article  PubMed  CAS  Google Scholar 

  44. Gilroy DW, Newson J, Sawmynaden P, Willoughby DA, Croxtall JD . A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J 2004; 18: 489–498.

    Article  PubMed  CAS  Google Scholar 

  45. Berger GE, Wood SJ, Pantelis C, Velakoulis D, Wellard RM, McGorry PD . Implications of lipid biology for the pathogenesis of schizophrenia. Aust NZ J Psychiatry 2002; 36: 355–366.

    Article  Google Scholar 

  46. Horrobin DF . Schizophrenia as a prostaglandin deficiency disease. Lancet 1977; 1: 936–937.

    Article  PubMed  CAS  Google Scholar 

  47. Horrobin DF . The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 1998; 30: 193–208.

    Article  PubMed  CAS  Google Scholar 

  48. Yao JK, Stanley JA, Reddy RD, Keshavan MS, Pettegrew JW . Correlations between peripheral polyunsaturated fatty acid content and in vivo membrane phospholipid metabolites. Biol Psychiatry 2002; 52: 823–830.

    Article  PubMed  CAS  Google Scholar 

  49. Yao JK, van Kammen DP, Welker JA . Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition. Schizophr Res 1994; 13: 217–226.

    Article  PubMed  CAS  Google Scholar 

  50. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP . Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res 2002; 58: 1–10.

    Article  PubMed  Google Scholar 

  51. Arvindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF et al. Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry 2003; 53: 56–64.

    Article  PubMed  CAS  Google Scholar 

  52. Horrobin DF, Manku MS, Hillman H, Iain A, Glen M . Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry 1991; 30: 795–805.

    Article  PubMed  CAS  Google Scholar 

  53. Yao JK, van Kammen DP, Gurklis J . Red blood cell membrane dynamics in schizophrenia. III. Correlation of fatty acid abnormalities with clinical measures. Schizophr Res 1994; 13: 227–232.

    Article  PubMed  CAS  Google Scholar 

  54. Doris AB, Wahle K, MacDonald A, Morris S, Coffey I, Muir W et al. Red cell membrane fatty acids, cytosolic phospholipase-A2 and schizophrenia. Schizophr Res 1998; 31: 185–196.

    Article  PubMed  CAS  Google Scholar 

  55. Strassnig M, Singh Brar J, Ganguli R . Dietary fatty acid and antioxidant intake in community-dwelling patients suffering from schizophrenia. Schizophr Res 2005; 76: 343–351.

    Article  PubMed  Google Scholar 

  56. Hibbeln JR, Makino KK, Martin CE, Dickerson F, Boronow J, Fenton WS . Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry 2003; 53: 431–441.

    Article  PubMed  CAS  Google Scholar 

  57. Myers CS, Contreras MA, Chang MC, Rapoport SI, Appel NM . Haloperidol downregulates phospholipase A(2) signaling in rat basal ganglia circuits. Brain Res 2001; 896: 96–101.

    Article  PubMed  CAS  Google Scholar 

  58. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG et al. Alterations in brain high-energy phosphate amd membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorous 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 1991; 48: 563–568.

    Article  PubMed  CAS  Google Scholar 

  59. Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T . Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 1999; 156: 1205–1208.

    PubMed  CAS  Google Scholar 

  60. Morrow JD, Awad JA, Oates JA, Roberts II LJ . Identification of skin as a major site of prostaglandin D2 release following oral administration of niacin in humans. J Invest Dermatol 1992; 98: 812–815.

    Article  PubMed  CAS  Google Scholar 

  61. Hudson CJ, Lin A, Cogan S, Cashman F, Warsh JJ . The niacin challenge test: clinical manifestation of altered transmembrane signal transduction in schizophrenia? Biol Psychiatry 1997; 41: 507–513.

    Article  PubMed  CAS  Google Scholar 

  62. Tavares H, Yacubian J, Talib LL, Barbosa NR, Gattaz WF . Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr Res 2003; 61: 1–6.

    Article  PubMed  Google Scholar 

  63. Shah SH, Vankar GK, Peet M, Ramchand CN . Unmedicated schizophrenic patients have a reduced skin flush in response to topical niacin. Schizophr Res 2000; 43: 163–164.

    PubMed  CAS  Google Scholar 

  64. Hudson CJ, Gotowiec A, Seeman M, Warsh J, Ross BM . Clinical subtyping reveals significant differences in calcium-dependent phospholipase A2 activity in schizophrenia. Biol Psychiatry 1999; 46: 401–405.

    Article  PubMed  CAS  Google Scholar 

  65. Waldo MC . Co-distribution of sensory gating and impaired niacin flush response in the parents of schizophrenics. Schizophr Res 1999; 40: 49–53.

    Article  PubMed  CAS  Google Scholar 

  66. Turenne SD, Seeman M, Ross BM . An animal model of nicotinic-acid-induced vasodilation: effect of haloperidol, caffeine and nicotine upon nicotinic acid response. Schizophr Res 2001; 50: 191–197.

    Article  PubMed  CAS  Google Scholar 

  67. Ross BM, Hughes B, Turenne S, Seeman M, Warsh JJ . Reduced vasodilatory response to methylnicotinate in schizophrenia as assessed by laser Doppler flowmetry. Eur Neuropsychopharmacol 2004; 14: 191–197.

    Article  PubMed  CAS  Google Scholar 

  68. Smesny S, Berger G, Rosburg T, Riemann S, Riehemann S, McGorry P et al. Potential use of the topical niacin skin test in early psychosis – a combined approach using optical reflection spectroscopy and a descriptive rating scale. J Psychiatr Res 2003; 37: 237–247.

    Article  PubMed  Google Scholar 

  69. Smesny S, Rosburg T, Klemm S, Riemann S, Baur K, Rudolph N et al. The influence of age and gender on niacin skin test results – implications for the use as a biochemical marker in schizophrenia. J Psychiatr Res 2004; 38: 537–543.

    Article  PubMed  Google Scholar 

  70. Glen AI, Cooper SJ, Rybakowski J, Vaddadi K, Brayshaw N, Horrobin DF . Membrane fatty acids, niacin flushing and clinical parameters. Prostag Leukot Essent Fatty Acids 1996; 55: 9–15.

    Article  CAS  Google Scholar 

  71. Horrobin DF . Schizophrenia: a biochemical disorder? Biomedicine 1980; 32: 54–55.

    PubMed  CAS  Google Scholar 

  72. Ross BM, Hudson CJ, Erlich J, Warsh JJ, Kish SJ . Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2. Arch Gen Psychiatry 1997; 54: 487–494.

    Article  PubMed  CAS  Google Scholar 

  73. Macdonald DJ, Boyle RM, Glen AC, Ross BM, Glen AI, Ward PE et al. The investigation of cytosolic phospholipase A2 using ELISA. Prostag Leukot Essent Fatty Acids 2004; 70: 377–381.

    Article  CAS  Google Scholar 

  74. Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B et al. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry 1993; 34: 641–649.

    Article  PubMed  CAS  Google Scholar 

  75. Gattaz WF, Kollisch M, Thuren T, Virtanen JA, Kinnunen PK . Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry 1987; 22: 421–426.

    Article  PubMed  CAS  Google Scholar 

  76. Gattaz WF, Hubner CV, Nevalainen TJ, Thuren T, Kinnunen PK . Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry 1990; 28: 495–501.

    PubMed  CAS  Google Scholar 

  77. Lasch J, Willhardt I, Kinder D, Sauer H, Smesny S . Fluorometric assays of phospholipase A2 activity with three different substrates in biological samples of patients with schizophrenia. Clin Chem Lab Med 2003; 41: 908–914.

    Article  PubMed  CAS  Google Scholar 

  78. Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ . Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res 1999; 821: 407–413.

    Article  PubMed  CAS  Google Scholar 

  79. Katila H, Appelberg B, Rimon R . No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr Res 1997; 26: 103–105.

    Article  PubMed  CAS  Google Scholar 

  80. Gattaz WF, Schmitt A, Maras A . Increased platelet phospholipase A2 activity in schizophrenia. Schizophr Res 1995; 16: 1–6.

    Article  PubMed  CAS  Google Scholar 

  81. Albers M, Meurer H, Marki F, Klotz J . Phospholipase A2 activity in serum of neuroleptic-naive psychiatric inpatients. Pharmacopsychiatry 1993; 26: 94–98.

    Article  PubMed  CAS  Google Scholar 

  82. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sherry ST, Ward M, Sirotkin K . dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 1999; 9: 677–679.

    Article  PubMed  CAS  Google Scholar 

  86. Dolan-O'Keefe M, Chow V, Monnier J, Visner GA, Nick HS . Transcriptional regulation and structural organization of the human cytosolic phospholipase A(2) gene. Am J Physiol Lung Cell Mol Physiol 2000; 278: L649–L657.

    Article  PubMed  CAS  Google Scholar 

  87. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  88. Tay A, Maxwell P, Li Z, Goldberg H, Skorecki K . Isolation of promoter for cytosolic phospholipase A2 (cPLA2). Biochim Biophys Acta 1994; 1217: 345–347.

    Article  PubMed  CAS  Google Scholar 

  89. Ramchand CN, Wei J, Lee KH, Peet M . Phospholipase A2 gene polymorphism and associated biochemical alterations in schizophrenia. Phospholipid Spectrum Disorder in Psychiatry. Carnforth: Marius Press, 1999; 1999: 31–38.

    Google Scholar 

  90. Hudson CJ, Kennedy JL, Gotowiec A, Lin A, King N, Gojtan K et al. Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr Res 1996; 21: 111–116.

    Article  PubMed  CAS  Google Scholar 

  91. Hudson CJ, Lin A, Horrobin DF . Phospholipases: in search of a genetic base of schizophrenia. Prostag Leukot Essent Fatty Acids 1996; 55: 119–122.

    Article  CAS  Google Scholar 

  92. Frieboes RM, Moises HW, Gattaz WF, Yang L, Li T, Liu X et al. Lack of association between schizophrenia and the phospholipase-A(2) genes cPLA2 and sPLA2. Am J Med Genet 2001; 105: 246–249.

    Article  PubMed  CAS  Google Scholar 

  93. Price SA, Fox H, St Clair D, Shaw DJ . Lack of association between schizophrenia and a polymorphism close to the cytosolic phospholipase A2 gene. Psychiatr Genet 1997; 7: 111–114.

    Article  PubMed  CAS  Google Scholar 

  94. Peet M, Ramchand CN, Lee J, Telang SD, Vankar GK, Shah S et al. Association of the Ban I dimorphic site at the human cytosolic phospholipase A2 gene with schizophrenia. Psychiatr Genet 1998; 8: 191–192.

    Article  PubMed  CAS  Google Scholar 

  95. Wei J, Lee KH, Hemmings GP . Is the cPLA2 gene associated with schizophrenia? Mol Psychiatry 1998; 3: 480–481.

    Article  PubMed  CAS  Google Scholar 

  96. Wei J, Hemmings GP . A study of a genetic association between the PTGS2/PLA2G4A locus and schizophrenia. Prostag Leukot Essent Fatty Acids 2004; 70: 413–415.

    Article  CAS  Google Scholar 

  97. Pae CU, Yu HS, Lee KU, Kim JJ, Lee CU, Lee SJ et al. BanI polymorphism of the cytosolic phospholipase A2 gene may confer susceptibility to the development of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 739–741.

    Article  PubMed  CAS  Google Scholar 

  98. Wei J, Hemmings GP . A study of the combined effect of the CLDN5 locus and the genes for the phospholipid metabolism pathway in schizophrenia. Prostag Leukot Essent Fatty Acids 2005; 73: 441–445.

    Article  CAS  Google Scholar 

  99. Yu YQ, Tao R, Wei J, Xu Q, Liu SZ, Ju GZ et al. No association between the PTGS2/PLA2G4A locus and schizophrenia in a Chinese population. Prostag Leukot Essent Fatty Acids 2004; 71: 405–408.

    Article  CAS  Google Scholar 

  100. Chowdari KV, Brandstaetter B, Semwal P, Bhatia T, Deshpande S, Reddy R et al. Association studies of cytosolic phospholipase A2 polymorphisms and schizophrenia among two independent family-based samples. Psychiatr Genet 2001; 11: 207–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Junqueira R, Cordeiro Q, Meira-Lima I, Farid Gattaz W, Vallada H . Allelic association analysis of phospholipase A2 genes with schizophrenia. Psychiatr Genet 2004; 14: 157–160.

    Article  PubMed  Google Scholar 

  102. Tao R, Yu Y, Zhang X, Guo Y, Shi J, Xie L et al. Cytosolic PLA2 genes possibly contribute to the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 137: 56–58.

    Article  Google Scholar 

  103. Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA . Phospholipase A2 and its role in brain tissue. J Neurochem 1997; 69: 889–901.

    Article  PubMed  CAS  Google Scholar 

  104. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genom 2000; 4: 83–91.

    Article  CAS  Google Scholar 

  105. Craddock N, O'Donovan MC, Owen MJ . The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  107. Reich DE, Lander ES . On the allelic spectrum of human disease. Trends Genet 2001; 17: 502–510.

    Article  PubMed  CAS  Google Scholar 

  108. Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC et al. Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci USA 2004; 101: 15992–15997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH . Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869–872.

    Article  PubMed  CAS  Google Scholar 

  110. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hopper JL, Hayes VM, Spurdle AB, Chenevix-Trench G, Jenkins MA, Milne RL et al. A protein-truncating mutation in CYP17A1 in three sisters with early-onset breast cancer. Hum Mutat 2005; 26: 298–302.

    Article  PubMed  CAS  Google Scholar 

  112. Wen G, Mahata SK, Cadman P, Mahata M, Ghosh S, Mahapatra NR et al. Both rare and common polymorphisms contribute functional variation at CHGA, a regulator of catecholamine physiology. Am J Hum Genet 2004; 74: 197–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wright AF, Hastie ND . Complex genetic diseases: controversy over the Croesus code. Genome Biol 2001; 2: COMMENT2007.1–COMMENT 2007.8.

    Google Scholar 

  114. Knoblauch H, Bauerfeind A, Toliat MR, Becker C, Luganskaja T, Gunther UP et al. Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. Hum Mol Genet 2004; 13: 993–1004.

    Article  PubMed  CAS  Google Scholar 

  115. Nakatani N, Uozumi N, Kume K, Murakami M, Kudo I, Shimizu T . Role of cytosolic phospholipase A2 in the production of lipid mediators and histamine release in mouse bone-marrow-derived mast cells. Biochemical Journal. 2000; 352 (Part 2): 311–317.

    Article  PubMed Central  CAS  Google Scholar 

  116. Fujishima H, Sanchez Mejia RO, Bingham III CO, Lam BK, Sapirstein A, Bonventre JV et al. Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. Proc Natl Acad Sci USA 1999; 96: 4803–4807.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank R Purcell for editing and proofreading assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G E Berger.

Additional information

Web Resources

The URLs for data presented herein is as follows dbSNP, http://www.ncbi.nlm.nih.gov/SNP/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, M., Cotton, R. & Berger, G. The role of phospholipases A2 in schizophrenia. Mol Psychiatry 11, 547–556 (2006). https://doi.org/10.1038/sj.mp.4001819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001819

Keywords

This article is cited by

Search

Quick links