Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Serine racemase binds to PICK1: potential relevance to schizophrenia

Abstract

Accumulating evidence from both genetic and clinico-pharmacological studies suggests that D-serine, an endogenous coagonist to the NMDA subtype glutamate receptor, may be implicated in schizophrenia (SZ). Although an association of genes for D-serine degradation, such as D-amino acid oxidase and G72, has been reported, a role for D-serine in SZ has been unclear. In this study, we identify and characterize protein interacting with C-kinase (PICK1) as a protein interactor of the D-serine synthesizing enzyme, serine racemase (SR). The binding of endogenous PICK1 and SR requires the PDZ domain of PICK1. The gene coding for PICK1 is located at chromosome 22q13, a region frequently linked to SZ. In a case–control association study using well-characterized Japanese subjects, we observe an association of the PICK1 gene with SZ, which is more prominent in disorganized SZ. Our findings implicating PICK1 as a susceptibility gene for SZ are consistent with a role for D-serine in the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goff DC, Coyle JT . The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–1377.

    Article  CAS  Google Scholar 

  2. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  Google Scholar 

  3. Tsai G, Coyle JT . Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002; 42: 165–179.

    Article  CAS  Google Scholar 

  4. Sawa A, Snyder SH . Schizophrenia: diverse approaches to a complex disease. Science 2002; 296: 692–695.

    Article  CAS  Google Scholar 

  5. Sawa A, Snyder SH . Schizophrenia: neural mechanisms for novel therapies. Mol Med 2003; 9: 3–9.

    Article  Google Scholar 

  6. Johnson JW, Ascher P . Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325: 529–531.

    Article  CAS  Google Scholar 

  7. Schell MJ, Molliver ME, Snyder SH . D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 1995; 92: 3948–3952.

    Article  CAS  Google Scholar 

  8. Schell MJ, Brady Jr RO, Molliver ME, Snyder SH . D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 1997; 17: 1604–1615.

    Article  CAS  Google Scholar 

  9. Snyder SH, Ferris CD . Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000; 157: 1738–1751.

    Article  CAS  Google Scholar 

  10. Snyder SH, Kim PM . D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res 2000; 25: 553–560.

    Article  CAS  Google Scholar 

  11. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97: 4926–4931.

    Article  CAS  Google Scholar 

  12. Baranano DE, Ferris CD, Snyder SH . Atypical neural messengers. Trends Neurosci 2001; 24: 99–106.

    Article  CAS  Google Scholar 

  13. Boehning D, Snyder SH . Novel neural modulators. Annu Rev Neurosci 2003; 26: 105–131.

    Article  CAS  Google Scholar 

  14. Wolosker H, Blackshaw S, Snyder SH . Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96: 13409–13414.

    Article  CAS  Google Scholar 

  15. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady Jr RO, Ferris CD et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 1999; 96: 721–725.

    Article  CAS  Google Scholar 

  16. Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP . Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 1994; 151: 1234–1236.

    Article  CAS  Google Scholar 

  17. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D . Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 1996; 169: 610–617.

    Article  CAS  Google Scholar 

  18. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  Google Scholar 

  19. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56: 21–27.

    Article  CAS  Google Scholar 

  20. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M . Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29–36.

    Article  CAS  Google Scholar 

  21. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  Google Scholar 

  22. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  Google Scholar 

  23. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry 2004; 9: 87–92; image 85.

    Article  CAS  Google Scholar 

  24. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  Google Scholar 

  25. Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  Google Scholar 

  26. Wang X, He G, Gu N, Yang J, Tang J, Chen Q et al. Association of G72/G30 with schizophrenia in the Chinese population. Biochem Biophys Res Commun 2004; 319: 1281–1286.

    Article  CAS  Google Scholar 

  27. Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D et al. Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 2004; 56: 169–176.

    Article  CAS  Google Scholar 

  28. Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M et al. Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 2005; 57: 1493–1503.

    Article  CAS  Google Scholar 

  29. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1. Am J Med Genet 1994; 54: 36–43.

    Article  CAS  Google Scholar 

  30. Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S et al. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12–q13.1: Part 2. Am J Med Genet 1994; 54: 44–50.

    Article  CAS  Google Scholar 

  31. Karayiorgou M, Gogos JA . A turning point in schizophrenia genetics. Neuron 1997; 19: 967–979.

    Article  CAS  Google Scholar 

  32. Pulver AE . Search for schizophrenia susceptibility genes. Biol Psychiatry 2000; 47: 221–230.

    Article  CAS  Google Scholar 

  33. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 16859–16864.

    Article  CAS  Google Scholar 

  34. Karayiorgou M, Gogos JA . The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 2004; 132: 95–104.

    Article  CAS  Google Scholar 

  35. Karayiorgou M, Gogos JA, Galke BL, Wolyniec PS, Nestadt G, Antonarakis SE et al. Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility. Biol Psychiatry 1998; 43: 425–431.

    Article  CAS  Google Scholar 

  36. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  Google Scholar 

  37. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    Article  CAS  Google Scholar 

  38. Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21: 434–439.

    Article  CAS  Google Scholar 

  39. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  Google Scholar 

  40. Jacquet H, Raux G, Thibaut F, Hecketsweiler B, Houy E, Demilly C et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 2002; 11: 2243–2249.

    Article  CAS  Google Scholar 

  41. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  Google Scholar 

  42. Staudinger J, Lu J, Olson EN . Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem 1997; 272: 32019–32024.

    Article  CAS  Google Scholar 

  43. Banker G, Goslin K (eds). Culturing Nerve Cells, 2nd edn. MIT Press: Cambridge, MA, 1998.

    Google Scholar 

  44. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 2003; 53: 571–576.

    Article  CAS  Google Scholar 

  45. Uchida N, Ujike H, Nakata K, Takaki M, Nomura A, Katsu T et al. No association between the sigma receptor type 1 gene and schizophrenia: results of analysis and meta-analysis of case–control studies. BMC Psychiatry 2003; 3: 13.

    Article  Google Scholar 

  46. Hong CJ, Liao DL, Shih HL, Tsai SJ . Association study of PICK1 rs3952 polymorphism and schizophrenia. Neuroreport 2004; 15: 1965–1967.

    Article  CAS  Google Scholar 

  47. De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH . Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat Res 2005; 573: 111–135.

    Article  CAS  Google Scholar 

  48. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  49. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH et al. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 2005; 102: 2105–2110.

    Article  CAS  Google Scholar 

  50. Staudinger J, Zhou J, Burgess R, Elledge SJ, Olson EN . PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 1995; 128: 263–271.

    Article  CAS  Google Scholar 

  51. Purcell S, Cherny SS, Sham PC . Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  Google Scholar 

  52. Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL . Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 2000; 20: 7258–7267.

    Article  CAS  Google Scholar 

  53. Dev KK, Nishimune A, Henley JM, Nakanishi S . The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 1999; 38: 635–644.

    Article  CAS  Google Scholar 

  54. Xia J, Zhang X, Staudinger J, Huganir RL . Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 1999; 22: 179–187.

    Article  CAS  Google Scholar 

  55. Boudin H, Doan A, Xia J, Shigemoto R, Huganir RL, Worley P et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 2000; 28: 485–497.

    Article  CAS  Google Scholar 

  56. Hirbec H, Perestenko O, Nishimune A, Meyer G, Nakanishi S, Henley JM et al. The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. J Biol Chem 2002; 277: 15221–15224.

    Article  CAS  Google Scholar 

  57. Dev KK, Nakanishi S, Henley JM . Regulation of mglu(7) receptors by proteins that interact with the intracellular C-terminus. Trends Pharmacol Sci 2001; 22: 355–361.

    Article  CAS  Google Scholar 

  58. Dev KK, Nakajima Y, Kitano J, Braithwaite SP, Henley JM, Nakanishi S . PICK1 interacts with and regulates PKC phosphorylation of mGLUR7. J Neurosci 2000; 20: 7252–7257.

    Article  CAS  Google Scholar 

  59. Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI et al. Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 2001; 30: 121–134.

    Article  CAS  Google Scholar 

  60. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  Google Scholar 

  61. Seeman P, Lee T, Chau-Wong M, Wong K . Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–719.

    Article  CAS  Google Scholar 

  62. Carlsson A . The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; 1: 179–186.

    Article  CAS  Google Scholar 

  63. Sawa A, Pletnikov MV, Kamiya A . Neuron–glia interactions clarify genetic-environmental links in mental illness. Trends Neurosci 2004; 27: 294–297.

    Article  CAS  Google Scholar 

  64. Newman EA . New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003; 26: 536–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Ann Pulver, David Valle, and Peter Zandi for critical reading of the manuscript. We thank Ms Yukiko Lema for preparation of the figures. We appreciate Dr Yukihiko Shirayama, Ms Pratima Dullor and Mr John Kleiderlein for technical assistance. This work was supported by US Public Health Service Grant MH-069853, foundation grants from NARSAD, S-R and Stanley (to AS); US Public Health Service Grant MH-18501 and Research Scientist Award DA00074 (to SHS); National Institutes of Health Grant NS036715 and the Howard Hughes Medical Institutes (to RLH). TH is supported by fellowships from the Sankyo Foundation of Life Science and Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, K., Maeda, K., Hikida, T. et al. Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11, 150–157 (2006). https://doi.org/10.1038/sj.mp.4001776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001776

Keywords

This article is cited by

Search

Quick links