Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes

Abstract

Despite the health hazards, cigarette smoking is disproportionately frequent among young women. A significant contribution of genetic factors to smoking phenotypes is well established. Efforts to identify susceptibility genes do not generally take into account possible interaction with environment, life experience and psychological characteristics. We recruited 501 female Israeli students aged 20–30 years, obtained comprehensive background data and details of cigarette smoking and administered a battery of psychological instruments. Smoking initiators (n=242) were divided into subgroups with high (n=127) and low (n=115) levels of nicotine dependence based on their scores on the Fagerstrom Tolerance Questionnaire and genotyped with noninitiators (n=142) for single nucleotide polymorphisms (SNPs) in 11 nicotinic cholinergic receptor genes. We found nominally significant (P<0.05) allelic and genotypic association with smoking initiation of SNP rs2072660 and multilocus haplotypes (P<0.007–0.05) in CHRNB2 and nominal (P<0.05) allelic or genotypic association of SNPs in CHRNA7 (rs1909884), CHRNA9 (rs4861065) and CHRNB3 (rs9298629) with nicotine dependence. Employing logistic regression and controlling for known risk factors, the best-fitting model for smoking initiation encompassed a 5 SNP haplotype in CHRNB2, neuroticism and novelty seeking (P=5.9 × 10−14, Nagelkerke r2=0.30). For severity of nicotine dependence, two SNPs in CHRNA7 (rs1909884 and rs883473), one SNP in CHRNA5 (rs680244) and the interaction of a SNP in CHRNA7 (rs2337980) with neuroticism, were included in the model (P=2.24 × 10−7, Nagelkerke r2=0.40). These findings indicate that background factors, psychological characteristics and genetic variation in nicotinic cholinergic receptors contribute independently or interactively to smoking initiation and to severity of nicotine dependence in young women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. World Health Organization, Regional Office for Europe. WHO European Country Profiles on Tobacco Control, WHO, Geneva, 2005.

  2. US Department of Health and Human Services. Women and smoking: a report of the Surgeon General. Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. 2001.

  3. Israel Ministry of Health. Report on Smoking in Israel 2003–2004. Israel Ministry of Health, May 2004.

  4. US Department of Health and Human Services. Preventing tobacco use among young people. US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. 1994.

  5. Barman SK, Pulkkinen L, Kaprio J, Rose RJ . Inattentiveness, parental smoking and adolescent smoking inititiation. Addiction 2004; 99: 1049–1061.

    Article  Google Scholar 

  6. Tyc VL, Hadley W, Allen D, Ey S, Rai SN, Lensing S . Predictors of smoking intentions and smoking status among nonsmoking and smoking adolescents. Addict Behav 2004; 29: 1143–1147.

    Article  Google Scholar 

  7. Harakeh Z, Scholte RH, Vermulst AA, de Vries H, Engels RC . Parental factors and adolescents' smoking behavior: an extension of the theory of planned behavior. Prev Med 2004; 39: 951–961.

    Article  Google Scholar 

  8. Tilson EC, McBride CM, Lipkus IM, Catalono RF . Testing the interaction between parent-child relationship factor and parent smoking to predict youth smoking. J of Adol Health 2004; 35: 182–189.

    Article  Google Scholar 

  9. Wilkinson D, Abraham C . Constructing an integrated model of the antecedents of adolescent smoking. Br J Health Psychol 2004; 9 (Part 3): 315–333.

    Article  Google Scholar 

  10. Pomerleau CS, Pomerleau OF, Flessland KA, Basson SM . Relationship of Tridimensional Personality Questionnaire scores and smoking variables in female and male smokers. J Subst Abuse 1992; 4: 143–154.

    Article  CAS  Google Scholar 

  11. Kremer I, Bachner-Melman R, Reshef A, Broude L, Nemanov L, Gritsenko I et al. Association of the serotonin transporter gene with smoking behavior. Am J Psychiatr 2005; 162: 924–930.

    Article  Google Scholar 

  12. Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO et al. A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 1999; 29: 299–308.

    Article  CAS  Google Scholar 

  13. Kim YH . Korean adolescents' smoking behavior and its correlation with psychological variables. Addict Behav 2005; 30: 343–350.

    Article  Google Scholar 

  14. Kardia SL, Pomerleau CS, Rozek LS, Marks JL . Association of parental smoking history with nicotine dependence, smoking rate, and psychological cofactors in adult smokers. Addict Behav 2003; 28: 1447–1452.

    Article  Google Scholar 

  15. Madden PA, Madden F, Bucholz KK, Dinwiddie SH, Slutske WS, Bierut LJ et al. Nicotine withdrawal in women. Addiction 1997; 92: 889–902.

    Article  CAS  Google Scholar 

  16. Stolerman IP, Jarvis MJ . The scientific case that nicotine is addictive. Psychopharmacology (Berlin) 1995; 117: 2–10.

    Article  CAS  Google Scholar 

  17. Sullivan PF, Kendler KS . The genetic epidemiology of smoking. Nicotine Tobacco Res 1999; 1 (Suppl 2): S51–S57; discussion S69–S70.

    Article  Google Scholar 

  18. Li, MD, Cheng R, Ma JZ, Swan GE . A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 2003; 98: 23–31.

    Article  Google Scholar 

  19. Niu T, Chen C, Ni J, Wang B, Fang Z, Shao H et al. Nicotine dependence and its familial aggregation in Chinese. Int J Epidemiol 2000; 29: 248–252.

    Article  CAS  Google Scholar 

  20. Koob GF . Neural mechanisms of drug reinforcement. Ann N Y Acad Sci 1992; 654: 171–191.

    Article  CAS  Google Scholar 

  21. Rossing MA . Genetic influences on smoking: candidate genes. Environ Health Perspect 1998; 106: 231–238.

    Article  CAS  Google Scholar 

  22. Gotti C, Clementi F . Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004; 74: 363–396.

    Article  CAS  Google Scholar 

  23. Laviolette SR, van der Kooy D . The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 2004; 5: 55–65.

    Article  CAS  Google Scholar 

  24. Rang HP, Dale MM, Ritter JM, Moore PK . Pharmacology, 5th edn Livingstone: Churchill, 2003.

    Google Scholar 

  25. Hogg RC, Raggenbass M, Bertrand D . Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003; 147: 1–46.

    Article  CAS  Google Scholar 

  26. Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S et al. A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 2004; 75: 112–121.

    Article  CAS  Google Scholar 

  27. Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V et al. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 2005; 14: 1211–1219.

    Article  CAS  Google Scholar 

  28. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C et al. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306: 1029–1032.

    Article  CAS  Google Scholar 

  29. Hogg RC, Bertrand D . Neuroscience. What genes tell us about nicotine addiction. Science 2004; 306: 983–985.

    Article  CAS  Google Scholar 

  30. Silverman MA, Neale MC, Sullivan PF, Harris-Kerr C, Wormley B, Sadek H et al. Haplotypes of four novel single nucleotide polymorphisms in the nicotinic acetylcholine receptor beta2-subunit (CHRNB2) gene show no association with smoking initiation or nicotine dependence. Am J Med Genet 2000; 96: 646–653.

    Article  CAS  Google Scholar 

  31. Lueders KK, Hu S, McHugh L, Myakishev MV, Sirota LA, Hamer DH . Genetic and functional analysis of single nucleotide polymorphisms in the beta2-neuronal nicotinic acetylcholine receptor gene (CHRNB2). Nicotine Tob Res 2002; 4: 115–125.

    Article  CAS  Google Scholar 

  32. Salas R, Pieri F, De Biasi M . Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 2004; 10: 10035–10039.

    Article  Google Scholar 

  33. Maskos UBE, Molles S, Pons M, Besson BP, Guiard JP, Guilloux A et al. Nicotine receptors reinforcement and cognition restored by targeted expression of nicotinic. Nature 2005; 436: 103–107.

    Article  CAS  Google Scholar 

  34. De Luca V, Wong AH, Muller DJ, Wong GW, Tyndale RF, Kennedy JL . Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology 2004; 29: 1522–1526.

    Article  CAS  Google Scholar 

  35. Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT . A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered 2004; 57: 59–68.

    Article  CAS  Google Scholar 

  36. Freedman R, Leonard S, Gault JM, Hopkins J, Cloninger CR, Kaufmann CA et al. Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 2001; 8: 20–22.

    Article  Google Scholar 

  37. Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M et al. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatr 2002; 59: 1085–1096.

    Article  CAS  Google Scholar 

  38. Martin LF, Kem WR, Freedman R . Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 2004; 174: 54–64.

    Article  CAS  Google Scholar 

  39. Fagerstrom KO . Measuring degree of physical dependence to tobacco smoking with reference to individuation of treatment. Addict Behav 1978; 3: 235–241.

    Article  CAS  Google Scholar 

  40. Derogatis LR 1993)). Brief Symptom Inventory (BSI): Administration, Scoring and Procedures Manual, 3rd edn, National Computer Systems: Minneapolis, MN.

    Google Scholar 

  41. Garner DM, Garfinkel PE . The Eating Attitudes Test: an index for the symptoms of anorexia nervosa. Psychol Med 1979; 9: 273–279.

    Article  CAS  Google Scholar 

  42. Bartholomew K, Horowitz LM . Attachment styles among young adults: a test of a four-category model. J Person Social Psychol 1991; 61: 226–244.

    Article  CAS  Google Scholar 

  43. Procidano ME, Heller K . Measures of perceived social support from friends and from family: three validation studies. Am J Comm Psych 1983; 11: 1–21.

    Article  CAS  Google Scholar 

  44. Parker G, Tubling H, Brown LB . A parental bonding instrument. British J Med Psych 1979; 52: 1–10.

    Article  Google Scholar 

  45. Olson DH, Bell R, Portner J . Family Adaptability and Cohesion Evaluation Scales, FACES-II, Family Inventories Manual: Life Innovations, 1992.

  46. Cloninger CR, Przybeck TR, Svrakic DM . Tridimensional Personality Questionnaire: US Normative Data. Psychol Rep 1991; 69: 1047–1057.

    Article  CAS  Google Scholar 

  47. Bonfield JK, Smith KF, Staden R . A new DNA sequence assembly program. Nucl Acids Res 1995; 23: 4992–4999.

    Article  CAS  Google Scholar 

  48. Little DP, Braun A, Darnhofer-Demar B, Frilling A, Li Y, McIver Jr RT et al. Detection of RET proto-oncogene codon 634 mutations using mass spectrometry. J Mol Med 1997; 75: 745–750.

    Article  CAS  Google Scholar 

  49. Little DP, Braun A, Darnhofer-Demar B, Koster H . Identification of apolipoprotein E polymorphisms using temperature cycled primer oligo base extension and mass spectrometry. Eur J Clin Chem Clin Biochem 1997; 35: 545–548.

    CAS  PubMed  Google Scholar 

  50. McCullough RM, Cantor CR, Ding C . High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucl Acids Res 2005; 33: 99.

    Article  Google Scholar 

  51. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  52. Stephens M, Donnelly P . A comparison of Bayesian methods for haplotype recontstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  Google Scholar 

  53. Hosmer D, Lemeshow S . Applied Logistic Regression, 2nd edn Wiley Interscience: New York, 2000.

  54. Gerra G, Garofano L, Zaimovic A, Moi G, Branchi B, Bussandri M et al. Association of the serotonin transporter promoter polymorphism with smoking behavior among adolescents. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 73–78.

    Article  Google Scholar 

  55. Hu S, Brody CL, Fisher C, Gunzerath L, Nelson ML, Sabol SZ et al. Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior. Mol Psychiatr 2000; 5: 181–188.

    Article  CAS  Google Scholar 

  56. Lerman C, Caporaso NE, Audrain J, Main D, Boyd NR, Shields PG . Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Mol Psychiatr 2000; 5: 189–192.

    Article  CAS  Google Scholar 

  57. Reuter M, Hennig J . Pleiotropic effect of the TPH A779C polymorphism on nicotine dependence and personality. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 20–24.

    Article  Google Scholar 

  58. Audrain-McGovern J, Lerman C, Wileyto EP, Rodriguez D, Shields PG . Interacting effects of genetic predisposition and depression on adolescent smoking progression. Am J Psychiatr 2004; 161: 1224–1230.

    Article  Google Scholar 

  59. Munafo M, Johnstone E, Murphy M, Walton R . New directions in the genetic mechanisms underlying nicotine addiction. Addict Biol 2001; 6: 109–117.

    Article  CAS  Google Scholar 

  60. Van den Bree MB, Whitmer MD, Pickworth WB . Predictors of smoking development in a population-based sample of adolescents: a prospective study. J Adolesc Health 2004; 35: 172–181.

    Article  Google Scholar 

  61. Baron-Epel O, Haviv-Messika A, Tamir D, Nitzan-Kaluski D, Green M . Mutiethnic differences in smoking in Israel: pooled analysis from three national surveys. Eur J Public Health 2004; 14: 384–389.

    Article  Google Scholar 

  62. Zimlichman E, Kochba I, Mimouni FB, Schochat T, Grotto I, Kreiss Y et al. Smoking habits and obesity in young adults. Addiction 2005; 100: 1021–1025.

    Article  Google Scholar 

  63. Delnevo CD, Hrywna M, Abatemarco DJ, Lewis MJ . Relationships between cigarette smoking and weight control in young women. Family Community Health 2003; 26: 140–146.

    Article  Google Scholar 

  64. Acierno RA, Kilpatrick DG, Resnick HS, Saunders BE, Best CL . Violent assault, posttraumatic stress disorder, and depression. Risk factors for cigarette use among adult women. Behav Modif 1996; 20: 363–384.

    Article  CAS  Google Scholar 

  65. Pfefferbaum B, Vinekar SS, Trautman RP, Lensgraf SJ, Reddy C, Patel N et al. The effect of loss and trauma on substance use behavior in individuals seeking support services after the 1995 Oklahoma City bombing. Ann Clin Psychiatr 2002; 14: 89–95.

    Article  Google Scholar 

  66. Vlahov D, Galea S, Resnick H, Ahern J, Boscarino JA, Bucuvalas M et al. Increased use of cigarettes, alcohol and marijuana among Manhattan, New York, residents after the September 11 terrorists attacks. Am J Epidemiol 2002; 155: 988–996.

    Article  Google Scholar 

  67. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatr 1999; 4: 163–172.

    Article  CAS  Google Scholar 

  68. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research described in this article was supported in part by Philip Morris USA Inc. and Philip Morris International (investigator designed, independently reviewed grant), the Genome Infrastructure Program of the Israeli Ministry of Science and Technology and the Crown Human Genome Center at the Weizmann Institute of Science. The authors thank Naomi Boumard and Professor Benny Yakir for their helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenbaum, L., Kanyas, K., Karni, O. et al. Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry 11, 312–322 (2006). https://doi.org/10.1038/sj.mp.4001774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001774

Keywords

This article is cited by

Search

Quick links