Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine

Abstract

Atomoxetine has been approved by the FDA as the first new drug in 30 years for the treatment of attention deficit/hyperactivity disorder (ADHD). As a selective norepinephrine uptake inhibitor and a nonstimulant, atomoxetine has a different mechanism of action from the stimulant drugs used up to now for the treatment of ADHD. Since brain acetylcholine (ACh) has been associated with memory, attention and motivation, processes dysregulated in ADHD, we investigated the effects of atomoxetine on cholinergic neurotransmission. We showed here that, in rats, atomoxetine (0.3–3 mg/kg, i.p.), – increases in vivo extracellular levels of ACh in cortical but not subcortical brain regions. The marked increase of cortical ACh induced by atomoxetine was dependent upon norepinephrine α-1 and/or dopamine D1 receptor activation. We observed similar increases in cortical and hippocampal ACh release with methylphenidate (1 and 3 mg/kg, i.p.) – currently the most commonly prescribed medication for the treatment of ADHD – and with the norepinephrine uptake inhibitor reboxetine (3–30 mg/kg, i.p.). Since drugs that increase cholinergic neurotransmission are used in the treatment of cognitive dysfunction and dementias, we also investigated the effects of atomoxetine on memory tasks. We showed that, consistent with its cortical procholinergic and catecholamine-enhancing profile, atomoxetine (1–3 mg/kg, p.o.) significantly ameliorated performance in the object recognition test and the radial arm-maze test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Caballero J, Nahata MC . Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin Ther 2003; 25: 3065–3083.

    Article  CAS  Google Scholar 

  2. Spencer T, Biederman J, Wilens T . Nonstimulant treatment of adult attention-deficit/hyperactivity disorder. Psychiatr Clin North Am 2004; 27: 373–383.

    Article  Google Scholar 

  3. Everitt BJ, Robbins TW . Central cholinergic systems and cognition. Annu Rev Psychol 1997; 48: 649–684.

    Article  CAS  Google Scholar 

  4. Ichikawa J, Dai J, O'Laughlin IA, Fowler WL, Meltzer HY . Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 2002; 26: 325–339.

    Article  CAS  Google Scholar 

  5. Shirazi-Southall S, Rodriguez DE, Nomikos GG . Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 2002; 26: 583–594.

    Article  CAS  Google Scholar 

  6. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699–711.

    Article  CAS  Google Scholar 

  7. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: New York, 1982.

    Google Scholar 

  8. Damsma G, Westerink BH, de Boer P, de Vries JB, Horn AS . Basal acetylcholine release in freely moving rats detected by on-line trans-striatal dialysis: pharmacological aspects. Life Sci 1988; 43: 1161–1168.

    Article  CAS  Google Scholar 

  9. Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP et al. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 2003; 138: 544–553.

    Article  CAS  Google Scholar 

  10. Wolff MC, Leander JD . SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur J Pharmacol 2003; 477: 213–217.

    Article  CAS  Google Scholar 

  11. Staubli U, Rogers G, Lynch G . Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 1994; 91: 777–781.

    Article  CAS  Google Scholar 

  12. Pussinen R, Sirvio J . Effects of cycloserine, a positive modulator of N-methyl-aspartate receptors, and ST 587, a putative alpha-1 adrenergic agonist, individually and in combination, on the non-delayed and delayed foraging behaviour of rats assessed in the radial arm maze. J Psychopharmacology 1999; 13: 171–179.

    Article  CAS  Google Scholar 

  13. Ennaceur A, Delacour J . A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 1988; 31: 47–59.

    Article  CAS  Google Scholar 

  14. Ennaceur A, Meliani K . Effects of physostigmine and scopolamine on rats' performances in object-recognition and radial-maze tests. Psychopharmacology (Berlin) 1992; 109: 321–330.

    Article  CAS  Google Scholar 

  15. Acquas E, Fibiger HC . Chronic lithium attenuates dopamine D1-receptor mediated increases in acetylcholine release in rat frontal cortex. Psychopharmacology (Berlin) 1996; 125: 162–167.

    Article  CAS  Google Scholar 

  16. Acquas E, Wilson C, Fibiger HC . Nonstriatal dopamine D1 receptors regulate striatal acetylcholine release in vivo. J Pharmacol Exp Ther 1997; 281: 360–368.

    PubMed  CAS  Google Scholar 

  17. Raiteri M, Del Carmine R, Bertollini A, Levi G . Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol 1977; 41: 133–143.

    Article  CAS  Google Scholar 

  18. Gresch PJ, Sved AF, Zigmond MJ, Finlay JM . Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem 1995; 65: 111–116.

    Article  CAS  Google Scholar 

  19. Day JC, Fibiger HC . Dopaminergic regulation of septohippocampal cholinergic neurons. J Neurochem 1994; 63: 2086–2092.

    Article  CAS  Google Scholar 

  20. Day J, Fibiger HC . Dopaminergic regulation of cortical acetylcholine release. Synapse 1992; 12: 281–286.

    Article  CAS  Google Scholar 

  21. Zaborszky L, Cullinan WE . Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 1996; 374: 535–554.

    Article  CAS  Google Scholar 

  22. Auld DS, Kornecook TJ, Bastianetto S, Quirion R . Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68: 209–245.

    Article  CAS  Google Scholar 

  23. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 2003; 6: 51–58.

    Article  CAS  Google Scholar 

  24. Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J et al. Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 2003; 8: 673–679.

    Article  CAS  Google Scholar 

  25. Granon S, Faure P, Changeux JP . Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 2003; 100: 9596–9601.

    Article  CAS  Google Scholar 

  26. Myhrer T . Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 2003; 41: 268–287.

    Article  CAS  Google Scholar 

  27. Sweeney JE, Bachman ES, Coyle JT . Effects of different doses of galanthamine, a long-acting acetylcholinesterase inhibitor, on memory in mice. Psychopharmacology (Berlin) 1990; 102: 191–200.

    Article  CAS  Google Scholar 

  28. Cai JX, Arnsten AFT . Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 1997; 282: 1–7.

    Google Scholar 

  29. Flood JF, Uezu K, Morley JE . Effect of histamine H2 and H3 receptor modulation in the septum on post-training memory processing. Psychopharmacology (Berlin) 1998; 140: 279–284.

    Article  CAS  Google Scholar 

  30. Popke EF, Mayorga AJ, Fogle CM, Paule MG . Effects of acute nicotine on several operant behaviors in rats. Pharmacol Biochem Behav 2000; 65: 247–254.

    Article  CAS  Google Scholar 

  31. Andersen JM, Lindberg V, Myhrer T . Effects of scopolamine and D-cycloserine on non-spatial reference memory in rats. Behav Brain Res 2002; 129: 211–216.

    Article  CAS  Google Scholar 

  32. Lidow MS, Koh P-O, Arnsten AFT . D1 dopamine receptors in the mouse prefrontal cortex: immunocytochemical and cognitive neuropharmacological analyses. Synapse 2003; 47: 101–108.

    Article  CAS  Google Scholar 

  33. Soncrant TT, Raffaele KC, Asthana S, Berardi A, Morris PP, Haxby JV . Memory improvement without toxicity during chronic, low dose intravenous arecoline in Alzheimer's disease. Psychopharmacology (Berlin) 1993; 112: 421–427.

    Article  CAS  Google Scholar 

  34. Canal N, Imbimbo BP . Relationship between pharmacodynamic activity and cognitive effects of eptastigmine in patients with Alzheimer's disease. Eptastigmine Study Group. Clin Pharmacol Ther 1996; 60: 218–228.

    Article  CAS  Google Scholar 

  35. Braida D, Sala M . Eptastigmine: ten years of pharmacology, toxicology, pharmacokinetic, and clinical studies. CNS Drug Rev 2001; 7: 369–386.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G G Nomikos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzavara, E., Bymaster, F., Overshiner, C. et al. Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine. Mol Psychiatry 11, 187–195 (2006). https://doi.org/10.1038/sj.mp.4001763

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001763

Keywords

This article is cited by

Search

Quick links