Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Extreme population differences across Neuregulin 1 gene, with implications for association studies

Abstract

Neuregulin 1 (NRG1) is one of the most exciting candidate genes for schizophrenia in recent years since its first association with the disease in an Icelandic population. Since then, many association studies have analysed allele and haplotype frequencies in distinct populations yielding varying results: some have replicated the association, although with different alleles or haplotypes being associated, whereas others have failed to replicate the association. These contradictory results might be attributed to population differences in allele and haplotype frequencies. In order to approach this issue, we have typed 13 SNPs across this large 1.4 Mb gene, including two of the SNPs originally found associated with schizophrenia in the Icelandic population, the objective being to discover if the underlying cause of the association discrepancies to date may be due to population-specific genetic variation. The analyses have been performed in a total of 1088 individuals from 39 populations, covering most of the genetic diversity in the human species. Most of the SNPs analysed displayed differing frequencies according to geographical region. These allele differences are especially relevant in two SNPs located in a large intron of the gene, as shown by the extreme FST values, which reveal genetic stratification correlated to broad continental areas. This finding may be indicative of the influence of some local selective forces on this gene. Furthermore, haplotype analysis reveals a clear clustering according to geographical areas. In summary, our findings suggest that NRG1 presents extreme population differences in allele and haplotype frequencies. We have given recommendations for taking this into account in future association studies since this diversity could give rise to erroneous results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jablensky A . The 100-year epidemiology of schizophrenia. Schizophr Res 1997; 28: 111–125.

    Article  CAS  Google Scholar 

  2. Goldner EM, Hsu L, Waraich P, Somers JM . Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature. Can J Psychiatry 2002; 47: 833–843.

    Article  Google Scholar 

  3. Rao DC, Morton NE, Gottesman II, Lew R . Path analysis of qualitative data on pairs of relatives: application to schizophrenia. Hum Hered 1981; 31: 325–333.

    Article  CAS  Google Scholar 

  4. Chiu YF, McGrath JA, Thornquist MH, Wolyniec PS, Nestadt G, Swartz KL et al. Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosome 8p and 14q. Mol Psychiatry 2002; 7: 658–664.

    Article  CAS  Google Scholar 

  5. Pulver AE . Search for schizophrenia susceptibility genes. Biol Psychiatry 2000; 47: 221–230.

    Article  CAS  Google Scholar 

  6. Bassett AS, Chow EW, Weksberg R, Brzustowicz L . Schizophrenia and genetics: new insights. Curr Psychiatry Rep 2002; 4: 307–314.

    Article  Google Scholar 

  7. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  Google Scholar 

  8. Pulver AE, Mulle J, Nestadt G, Swartz KL, Blouin JL, Dombroski B et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry 2000; 5: 650–653.

    Article  CAS  Google Scholar 

  9. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  Google Scholar 

  10. Blaveri E, Kalsi G, Lawrence J, Quested D, Moorey H, Lamb G et al. Genetic association studies of schizophrenia using the 8p21–22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur J Hum Genet 2001; 9: 469–472.

    Article  CAS  Google Scholar 

  11. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  Google Scholar 

  12. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153: 1534–1540.

    Article  CAS  Google Scholar 

  13. Falls DL . Neuregulins and the neuromuscular system: 10 years of answers and questions. J Neurocytol 2003; 32: 619–647.

    Article  CAS  Google Scholar 

  14. Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993; 362: 312–318.

    Article  CAS  Google Scholar 

  15. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  Google Scholar 

  16. Law A . Schizophrenia, IV, Neuregulin-1 in the human brain. Am J Psychiatry 2003; 160: 1392.

    Article  Google Scholar 

  17. Law AJ, Shannon Weickert C, Hyde TM, Kleinman JE, Harrison PJ . Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 2004; 127: 125–136.

    Article  CAS  Google Scholar 

  18. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 2004; 304: 700–703.

    Article  CAS  Google Scholar 

  19. Okada M, Corfas G . Neuregulin1 downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 2004; 14: 337–344.

    Article  CAS  Google Scholar 

  20. James H, Meador-Woodruff DJH . Glutamate receptor expression in schizophrenic brain. Brain Res Rev 2000; 31: 288–294.

    Article  Google Scholar 

  21. Collier DA, Li T . The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 2003; 480: 177–184.

    Article  CAS  Google Scholar 

  22. Aghajanian GK, Marek GJ . Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 2000; 31: 302–312.

    Article  CAS  Google Scholar 

  23. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  Google Scholar 

  24. Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY et al. Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004; 9: 11–12.

    Article  CAS  Google Scholar 

  25. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003; 8: 706–709.

    Article  CAS  Google Scholar 

  26. Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N et al. A case control and family based association study of the neuregulin1 gene and schizophrenia. J Med Genet 2004; 41: 31–34.

    Article  CAS  Google Scholar 

  27. Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J et al. Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 2004; 9: 208–213.

    Article  CAS  Google Scholar 

  28. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  Google Scholar 

  29. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 328.

    Article  Google Scholar 

  30. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374.

    Article  CAS  Google Scholar 

  31. Iwata N, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry 2004; 9: 126–127.

    Article  CAS  Google Scholar 

  32. Thiselton DL, Webb BT, Neale BM, Ribble RC, O'Neill FA, Walsh D et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol Psychiatry 2004; 9: 729.

    Article  CAS  Google Scholar 

  33. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  34. Li N, Stephens M . Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 2003; 165: 2213–2233.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Long JR, Zhao LJ, Liu PY, Lu Y, Dvornyk V, Shen H et al. Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes. BMC Genet 2004; 5: 11.

    Article  Google Scholar 

  36. Lonjou C, Zhang W, Collins A, Tapper WJ, Elahi E, Maniatis N et al. Linkage disequilibrium in human populations. Proc Natl Acad Sci USA 2003; 100: 6069–6074.

    Article  CAS  Google Scholar 

  37. Maniatis N, Collins A, Xu CF, McCarthy LC, Hewett DR, Tapper W et al. The first linkage disequilibrium (LD) maps: delineation of hot and cold blocks by diplotype analysis. Proc Natl Acad Sci USA 2002; 99: 2228–2233.

    Article  CAS  Google Scholar 

  38. Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003; 33: 382–387.

    Article  CAS  Google Scholar 

  39. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ et al. Linkage disequilibrium in the human genome. Nature 2001; 411: 199–204.

    Article  CAS  Google Scholar 

  40. Chattopadhyay P, Pakstis AJ, Mukherjee N, Iyengar S, Odunsi A, Okonofua F et al. Global survey of haplotype frequencies and linkage disequilibrium at the RET locus. Eur J Hum Genet 2003; 11: 760–769.

    Article  CAS  Google Scholar 

  41. Kidd JR, Pakstis AJ, Zhao H, Lu RB, Okonofua FE, Odunsi A et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am J Hum Genet 2000; 66: 1882–1899.

    Article  CAS  Google Scholar 

  42. Kidd KK, Morar B, Castiglione CM, Zhao H, Pakstis AJ, Speed WC et al. A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Hum Genet 1998; 103: 211–227.

    Article  CAS  Google Scholar 

  43. Mateu E, Calafell F, Lao O, Bonne-Tamir B, Kidd JR, Pakstis A et al. Worldwide genetic analysis of the CFTR region. Am J Hum Genet 2001; 68: 103–117.

    Article  CAS  Google Scholar 

  44. Osier MV, Pakstis AJ, Soodyall H, Comas D, Goldman D, Odunsi A et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am J Hum Genet 2002; 71: 84–99.

    Article  CAS  Google Scholar 

  45. Bertranpetit J, Calafell F, Comas D, Gonzalez-Neira A, Navarro A . Structure of linkage disequilibrium in humans: genome factors and population stratification. Cold Spring Harb Symp Quant Biol 2003; 68: 79–88.

    Article  CAS  Google Scholar 

  46. Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L et al. A human genome diversity cell line panel. Science 2002; 296: 261–262.

    Article  CAS  Google Scholar 

  47. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA et al. Genetic structure of human populations. Science 2002; 298: 2381–2385.

    Article  CAS  Google Scholar 

  48. Excoffier L, Smouse P, Quattro JM . Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Schneider S, Roessli D, Excoffier L . Arlequin ver. 2.0: A Software for Population Genetic Data Analysis. Switzerland: Genetics and Biometry Laboratory, University of Geneva, 2000.

    Google Scholar 

  50. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  51. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  52. Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 2004; 9: 698–704.

    Article  CAS  Google Scholar 

  53. Excoffier L, Hamilton G . Comment on ‘genetic structure of human populations’. Science 2003; 300: 1877; author reply 1877.

    Article  CAS  Google Scholar 

  54. Barbujani G, Magagni A, Minch E, Cavalli-Sforza LL . An apportionment of human DNA diversity. Proc Natl Acad Sci USA 1997; 94: 4516–4519.

    Article  CAS  Google Scholar 

  55. Kidd KK, Pakstis AJ, Speed WC, Kidd JR . Understanding human DNA sequence variation. J Hered 2004; 95: 406–420.

    Article  CAS  Google Scholar 

  56. Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2004; 2: e286.

    Article  CAS  Google Scholar 

  57. Stefansson H, Thorgeirsson TE, Gulcher JR, Stefansson K . Neuregulin 1 in schizophrenia: out of Iceland. Mol Psychiatry 2003; 8: 639–640.

    Article  CAS  Google Scholar 

  58. Landry JR, Mager DL . Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1. Genomics 2002; 80(5): 499–508.

    Article  CAS  Google Scholar 

  59. De Benedictis L, Polizzi A, Cangiano G, Buttiglione M, Arbia S, Storlazzi CT et al. Alternative promoters drive the expression of the gene encoding the mouse axonal glycoprotein F3/contactin. Brain Res Mol Brain Res 2001; 95: 55–74.

    Article  CAS  Google Scholar 

  60. Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G, Destro-Bisol G et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 2001; 293: 455–462.

    Article  CAS  Google Scholar 

  61. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002; 419: 832–837.

    Article  CAS  Google Scholar 

  62. Hamblin MT, Thompson EE, Di Rienzo A . Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 2002; 70: 369–383.

    Article  Google Scholar 

  63. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 2004; 74: 1111–1120.

    Article  CAS  Google Scholar 

  64. Weiss KM, Terwilliger JD . How many diseases does it take to map a gene with SNPs? Nat Genet 2000; 26: 151–157.

    Article  CAS  Google Scholar 

  65. Cardon LR, Bell JI . Association study designs for complex diseases. Nat Rev Genet 2001; 2: 91–99.

    Article  CAS  Google Scholar 

  66. Marchini J, Cardon LR, Phillips MS, Donnelly P . The effects of human population structure on large genetic association studies. Nat Genet 2004; 36: 512–517.

    Article  CAS  Google Scholar 

  67. Helgason A, Yngvadóttir B, Hrafnkelsson B, Gulcher J, Stefánsson K . An Icelandic example of the impact of population structure on association studies. Nat Genet 2005; 37: 90–95.

    Article  CAS  Google Scholar 

  68. Zondervan KT, Cardon LR . The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5: 89–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mònica Vallés, Universitat Pompeu Fabra, for technical assistance and Arcadi Navarro, Universitat Pompeu Fabra for reading of the manuscript and helpful discussion and suggestions. We also thank Hreinn Stefansson and Arnar Ingason from deCode, Iceland for constructive comments and providing unpublished information; and Howard Cann for his effort providing the CEPH samples.

The present study was supported by the Dirección General de Investigación, Ministerio de Educación y Ciencia, Spain (BFU2004-04208/BMC) and Direcció General de Recerca, Generalitat de Catalunya (2001SGR00285). MG received a fellowship from the International Graduate school of Catalunya (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Comas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, M., González-Neira, A., Lao, O. et al. Extreme population differences across Neuregulin 1 gene, with implications for association studies. Mol Psychiatry 11, 66–75 (2006). https://doi.org/10.1038/sj.mp.4001749

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001749

Keywords

This article is cited by

Search

Quick links